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Capture-aware Bayesian RFID Tag Estimate for
Large-scale Identification

Haifeng Wu, Yang Wang, and Yu Zeng

Abstract—Dynamic framed slotted Aloha algorithm is one of
popular passive radio frequency identification (RFID) tag anti-
collision algorithms. In the algorithm, a frame length requires
dynamical adjustment to achieve higher identification efficiency.
Generally, the adjustment of the frame length is not only related
to the number of tags, but also to the occurrence probability
of capture effect. Existing algorithms could estimate both the
number of tags and the probability of capture effect. Under
large-scale RFID tag identification, however, the number of
tags would be much larger than an initial frame length. In
this scenario, the existing algorithm’s estimation errors would
substantially increase. In this paper, we propose a novel algorithm
called capture-aware Bayesian estimate, which adopts Bayesian
rules to accurately estimate the number and the probability
simultaneously. From numerical results, the proposed algorithm
adapts well to the large-scale RFID tag identification. It has
lower estimation errors than the existing algorithms. Further,
the identification efficiency from the proposed estimate is also
higher than the existing algorithms.

Index Terms—Aloha, Bayesian, capture effect, large-scale,
radio frequency identification (RFID).

I. INTRODUCTION

INTERNET of things (IoT) has been considered as the
third wave of world information industry, after waves of

computer and internet. The purpose of IoT is to link real-
world objects with virtual information and then to identify,
track and manage all goods available [1]. IoT needs to be based
on widely used sensors because plenty of objects’ information
is collected into network only by the sensors. Radio frequency
identification (RFID) is a keystone of the sensors technology
since small passive RFID tags make it possible to link millions
and billions of physical products with virtual information. To
enhance identification efficiency, the multiple tags in IoT need
to be read quickly and the tags may simultaneously transmit
their signals to the reader, which leads to collisions [2].
Generally, an RFID system adopts anti-collision algorithms
to solve the problem [3]. Therefore, RFID tag anti-collision
algorithm will play an important role in IoT.
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In a passive RFID system, if two or more tags backscatter
their signals to a reader simultaneously, a collision may happen
and will disturb the identification [3], [4]. However, two or
more tags do not necessarily lead to collisions. Since the
distances between the tags and the reader are different, the
strengths of backscattered signals would also be different. The
tag with stronger signal would be identified, and the weaker
one would be missed. The phenomenon is called capture effect
[5]. Because capture effect is very common in an RFID system,
optimal solution for the collision problem under capture effect
has attracted much attention [5]−[8].

In the conventional anti-collision algorithms, a dynamic
framed slotted Aloha (DFSA) algorithm is very popular [9]−
[15]. The algorithm configures an identification process with
some continuous frames and each frame consists of slots. To
achieve optimal identification efficiency, the frame will be
dynamically adjusted according to the number of unidentified
tags. Therefore, some new algorithms are proposed in recent
years, but they do not take the capture effect into account. Here
are several examples. Reference [16] presents the differential
estimation problem to estimate the number of tags and the
zero differential estimator (ZDE) is proposed to solve this
problem without the capture effect. Reference [17] proposes
an RFID estimation scheme with blocker tags (REB) while
considering the privacy issue, but the phenomenon of capture
effect is neglected. Reference [18] proposes a new scheme
for estimating tag population size called average run-based
tag estimation (ART), which is significantly faster than prior
schemes regardless of the tag population sizes. But ART
still does not take the capture effect into account. Under
capture effect, however, the adjustment may not guarantee
the optimal efficiency because the frame length is related
not only to the number of tags but also to the occurrence
probability of capture effect [7], and [8], [19], [20] have
proposed algorithms to estimate the number of tags and the
probability simultaneously. In general, both the number of tags
and the probability of capture effect are unknown. Therefore,
the number and the probability need to be estimated. For the
problem, this paper proposes a novel algorithm called capture-
aware Bayesian estimate. The contributions of this algorithm
are summarized as follows.

1) Estimate the number of tags under large-scale RFID tag
environment, where hundreds of tags or more are required to
be identified at the same time. In the identification environ-
ment, the number of tags may be greater than an initial frame
length of the DFSA algorithm. In this scenario, the estimation
errors of existing algorithms will substantially increase. The
proposed algorithm could reset the initial frame length from
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the first several slots in the initial frame. This guarantees
that the estimation could be performed well via capture-aware
Bayesian RFID tag estimate for large-scale identification under
the large-scale tag environment.

2) Apply Bayesian rules [21] to estimate the number of
tags and the probability of capture effect simultaneously. From
three cost functions, three kinds of Bayesian estimates are
derived.

From the numerical results, the estimation errors of the
proposed algorithm are lower than those of conventional
algorithms under the large-scale RFID tag environment with
capture effect. Moreover, the identification efficiency from the
proposed algorithm is also higher than that from the existing
algorithms.

The rest of this paper is organized as follows. In Section
II, the problems and related works are discussed. Section III
describes identification efficiency and estimation under large-
scale tag identification. The capture-aware estimation for large-
scale identification is described in Section IV. The numerical
results are shown in Section V. Finally, Section VI gives a
conclusion.

II. PROBLEM DESCRIPTION AND RELATED WORKS

A dynamic framed slotted Aloha RFID algorithm configures
an identification cycle with some continuous frames that
consist of slots. Each tag responds at a random slot and only
once in a frame. For a given time slot, there are only three
possibilities: no tags, one tag, and more than one tag response.
When capture effect does not occur, the three possibilities will
result in an idle slot, a successful slot and a collision slot,
respectively. The identification efficiency can be defined as
the ratio between the duration of all successful time slots and
total time slots. In DFSA algorithm, idle slots will increase
when a frame length is too large. On the other hand, collision
slots will increase when the frame length is too small. Both
of them will lead to lower identification efficiency. Hence, the
frame length requires to be dynamically adjusted for higher
efficiency. When capture effect does not occur, the optimal
frame length is only related to the number of tags [3], [10].
In this scenario, we could estimate only the number of the
tags. When capture effect occurs, however, the frame length
is also related to the occurrence probability of capture effect.
Thus, we need to estimate both the number of tags and the
probability of capture effect.

Generally, a reader does not know the number of tags in its
magnetic field before identifying, and an initial frame length
in DFSA is set in advance. If the reader sets a very large value
to the initial frame length, there must be excessive idle slots
when the number of tags is less. Therefore, the value of length
should be a compromise, e.g., 24 in Q algorithm of electronic
product code (EPC) C1 Gen2 [22], [23]. Under large-scale tag
environment, however, hundreds of tags or more need to be
identified at the same time. The number of tags would be much
larger than the initial frame length, which does not guarantee
that the existing estimates perform well.

Vogt algorithm [10] is one of the estimates based on DFSA
in RFID systems. The algorithm estimates the tag population

by searching a minimum value between the observed and the
expected number of the idle slots, successful slots and collision
slots. However, the algorithm estimates only the number of
tags frame length and does not consider the probability of
capture effect.

Capture-aware backlog estimation algorithm (CMEBE) [7]
adopts two-dimensional searches for a minimum value to es-
timate the tag population and the probability of capture effect
simultaneously. Under large-scale tag environment, however,
the number of tags would be much larger than the initial
frame length. The minimum value may not exist at all.
Capture-aware estimate (CAE) [8] could also estimate the tag
population and the probability of capture effect simultane-
ously. Compared with CMEBE, CAE has lower computational
complexity because it does not need to search for a minimum
value. However, under large-scale RFID tags environment, the
number of tags would be much larger than the initial frame
length, and the number of idle slots in an initial frame is likely
to be zero. CAE would be difficult to estimate the number of
tags because the algorithm needs to compute the logarithm of
the number of idle slots which must not be zero.

Maximum a posterior probability (MAP) algorithm [19] also
searches for an extremum value to estimate the number of
tags and the probability. Like CMEBE, MAP would not find
a global extremum value, either when it is applied to large-
scale RFID tag environment.

Bayesian method is not new [21]. Reference [13] has pro-
posed three Bayesian methods to estimate the tag population.
However, these methods take only the tag population into
account. Reference [20] proposes a minimum mean square
error (MMSE) method to estimate the tag population in
large-scale RFID tag environment. In fact, the estimate could
be derived by Bayesian method. This paper proposes three
Bayesian estimates, which take both the number of tags and
the probability of capture effect into account. Furthermore,
the proposed methods could adapt well to the large-scale tag
environment.

III. IDENTIFICATION EFFICIENCY AND ESTIMATION
UNDER LARGE-SCALE TAG IDENTIFICATION

If t0, t1 and tk denote the duration of an idle, successful
and collision slot, respectively, the expected identification
efficiency of a frame in a dynamic ALOHA can be defined as
[10]−[12]

E(Ps) =
a1t1

a0t0 + a1t1 + aktk
(1)

where E(·) denotes an expected function, a0, a1 and ak denote
the expected numbers of idle, successful and collision slots,
respectively and could be given by [7]

a0 = a′0
a1 = a′1 + αa′k
ak = (1− α)a′k (2)

in which α denotes the probability of capture effect, a′0, a′1
and a′k are the expected number of slots where no tags, one
tag and at least two tags (k ≥ 2) respond, respectively. From
[10]−[12], a′0, a′1 and a′k can be given by
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a′0 = l

(
1− 1

l

)n

a′1 = n

(
1− 1

l

)n−1

a′k = l − l

(
1− 1

l

)n

− n

(
1− 1

l

)n−1

(3)

where l denotes the frame length and n denotes the number
of tags. In order to obtain the optimal identification efficiency,
we have the optimal frame length

l∗ = arg max
l∈L

Ps (4)

where L denotes the search range of l. Substituting (2) and
(3) into (1), we can find that Ps is in fact a function of n and
α. Generally, the values of n and α are unknown in advance.
Therefore, we need to estimate them to obtain the optimal
frame length in (4).

Vogt algorithm [10] estimates the number of tags from

n̂ = min
n∈N

‖EEE′(n)−OOO‖2 (5)

where ‖ · ‖ is an Euclidean norm, EEE′(n) = [a′0, a
′
1, a

′
k]T , OOO =

[c0, c1, ck]T , c0, c1 and ck denote the observed numbers of
idle, successful and collision slots, respectively, N denotes
the search range of the number of tags.

In (5), Vogt only estimates the number of tags n and does
not consider the probability of capture effect α. It sets the
frame length by l = n [2]. From (4), Vogt is difficult to obtain
the maximum identification efficiency without α.

CMEBE estimates the number of tags and the probability
of capture effect by

(α̂CMEBE , n̂CMEBE) = arg min
α∈A,n∈N

‖EEE(α, n)−OOO‖2 (6)

where EEE(α, n) = [a0, a1, ak]T , A and N denote the search
range of α and n, respectively. From (6), CMEBE needs the
2D searches for a minimum value of ‖EEE(α, n)−OOO‖2. Under
large-scale tags identification environment, the number of tags
may be much greater than an initial frame length, and the
number of idle slots c0 in the frame is likely to be zero. In
this scenario, ‖EEE(α, n)−OOO‖2 in (6) may not have a minimum
value. Let

ε = ‖EEE(α, n)−OOO‖2. (7)

We give a 3D surface of ε about searching α and n in Fig. 1.
In the figure, the initial frame length is 128, the number of
tags number is 800 and the probability of capture effect is
0.5. From Fig. 1, there is no global minimum value of ε at all.
Further, Fig. 2 gives the 2D cross-sections close to the canyon
of the curve surface ε in Fig. 1 when α is 0.4, 0.5 and 0.6,
respectively. From Fig. 2, we can see that both the curves ε
of α = 0.5 and 0.6 decrease monotonously with n. Although
the curve ε of α = 0.4 has a minimum value, the value is not
global.

CAE algorithm [8] estimates the number of tags by

n̂ =
ln( c0

l )
ln(1− 1

l )
(8)

and then estimates the probability of capture effect from (2)
[8]. Since (8) does not need to search a minimum value like
Vogt, CMEBE and CAE have lower computational complexity.
When the number of tags is much greater than an initial frame
length, however, the number of idle slots is likely c0 = 0
and we would not figure out ln(c0/l) in (8). Thus, CAE is
also difficult to be applied to the large-scale tag identification.
Next, we will propose our estimation method. The proposed
method would accurately estimate the number of tags and the
probability of capture effect even when the number of tags is
much greater.

Fig. 1. ε in (7) about searching number of tags and probability of capture
effect when l = 128 and n = 800.

Fig. 2. 2D cross-sections close to the canyon of the curve surface ε in Fig. 1.

IV. CAPTURE-AWARE ESTIMATION FOR LARGE-SCALE
IDENTIFICATION

A. Setting Initial Frame for Large-scale Identification

In large-scale identification, it is very likely that the tag
population in the magnetic field of a reader is much larger
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than an initial frame length, i.e., n À l0. Thus, the number
of idle slots would be c0 = 0. From the analysis in Section
III, the reason why CMEBE and CAE are not applied to the
large-scale tags identification is c0 = 0. Intuitively, we can
lengthen the frame length l0 until c0 6= 0. However, how can
we obtain c0? Generally, c0 is obtained only after the frame
completing. If n À l0, it will produce many collision slots
after the frame completing. This will cause lower identification
efficiency. Actually, we could predict whether c0 = 0 or not
from only the first several slots in the frame. Hence, excessive
collision slots would be reduced. Next, we will describe the
method.

Given one of slots in a frame of l, the probability that the
slot is idle, successful or collision can be shown as

pj =
aj

l
(9)

where j = 0, 1 and k, respectively. In DFSA, when the tag
population is n and the frame length is l, the probability that
the first m slots are all non-idle is given as

Pm =
m∑

i=1

(
m
i

)
pi

k(1− pk)m−i. (10)

Table I gives the theoretical and experimental results of Pm,
m = 1, 2, 3, 4 and 5 when l = 128, α = 0.5 and n varies from
100 to 1000. The theoretical values are computed from (10)
and the experimental values are the ratio of the number of the
experiments where there is not less than one collision slot in
the first m slots and the total number of the experiments. From
the table, all the values of Pm will increase with n, regardless
of m. Especially, Pm is very close to 1 with a larger value of
m when n = 1000. The results indicate that the probability
that there is not less than one collision slot in the first m slots
increases with a larger value of n. When it is in large-scale
RFID tags environment, Pm is close to 1 with m > 2. Hereby,
the initial frame length can be set to

l0 = Kl0 (11)

where K is an integer greater than one, which ensures that

TABLE I
PROBABILITY OF NOT LESS THAN ONE COLLISION SLOT IN THE

FIRST m SLOTS WHEN l0 = 128 AND α = 0.5

n m = 1 m = 2 m = 3 m = 4 m = 5

100
0.092 0.176 0.252 0.321 0.383

(0.093) (0.175) (0.252) (0.321) (0.385)

300
0.340 0.565 0.713 0.811 0.875

(0.340) (0.564) (0.713) (0.811) (0.875)

500
0.451 0.700 0.835 0.909 0.950

(0.451) (0.699) (0.836) (0.909) (0.951)

700
0.487 0.736 0.865 0.931 0.964

(0.487) (0.735) (0.864) (0.930) (0.964)

1000
0.498 0.748 0.874 0.937 0.968

(0.499) (0.747) (0.874) (0.937) (0.968)

where the values given in the brackets are computed from (10)

the frame length becomes larger. But it does not mean that K
should be as large as possible. Because if the frame length is
too large, there will be more idle slots, which will increase the
identification time and lower the performance of the algorithm.

The method called self-adjusted frame length ensures the
rationality of the initial frame length. Fig. 3 gives the self-
adjusted frame length when l0 = 128, n = 600, m = 3, K
= 2, 0 ≤ α ≤ 1. The settings of initial frame length of Vogt,
traditional Bayes, CMEBE and CAE algorithms mentioned in
the paper all can be seen from Fig. 3. Besides, Fig. 3 gives two
optimal lengths computed by (4) under t0 = t1 = tk and t0 6=
t1 6= tk, respectively, and system parameters of the latter are
specified in EPC C1 Gen2, which can be referenced to [23].
From Fig. 3, we can see that Vogt and traditional Bayes’ curves
remain unchanged when α increases, and CMEBE and CAE’s
curves ascend far away from the curve of optimal length when
t0 6= t1 6= tk as α decreases. On the other hand, the curve of
self-adjusted frame length always comes close to the optimal
lengths regardless of the value of α. As a matter of fact, the
proposed method can make sure the rationality of the initial
frame length regardless of α.

Fig. 3. The frame length when l0 = 128, n = 600 and 0 ≤ α ≤ 1.

Note that we judge whether there is more than one collision
slot in the first m slots instead of being all collision slots like
the method in [22]. The reason is that capture effect may occur
in a slot. Even if the slot has more than two tag responses,
this slot also can be a successful slot.

B. Bayesian Estimate

From the subsection above, our method requires to judge
the three slots iteratively. This may produce identification
more times if the iterations are more. The value of probability
among frames may be time-variant, e.g., mobile environment.
Consider the environment without mobile identification, the
probability may be slowly time-variant. Thus, we can estimate
the tag and capture effect probability, and then set the next
frame length from the estimated value. The duration of the
followed self-adjusted frame length from the first three slots
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can be shortened because the iterations may be reduced. For
the mobile environment, surely, self-adjusted step will be more
important.

In this subsection, we will propose the Bayesian estimate. It
could estimate both the number of tags n and the probability of
capture effect α. Hence, we call the proposed estimate capture-
aware. The estimate could be given as

〈n̂, α̂〉 = arg min
ñ∈N
α̃∈A

+∞∑
n=1

1∑
α=0

J(ñ, α̃, n, α)p(n, α |C) (12)

where J(ñ, α̃, n, α) is a cost function, p(n, α |C) is a proba-
bility w.r.t. n and α under condition

C = 〈c0, c1, ck〉 (13)

and could be computed by [15]

p(n, α |C) =
l

c0!c1!ck!
(p0)c0(p1)c1(pk)ck . (14)

The search range of set N and A are given as

Ω = {ñ |c1 + 2ck ≤ ñ ≤ N} (15)
A = {α̃ |0 ≤ α̃ ≤ 1} (16)

respectively where N is the maximum number of tags read by
the RFID system.

According to (12), different Bayesian estimates have differ-
ent cost function. Here, we choose the following three kinds
of cost functions. The cost function of capture-aware Bayesian
mean square estimate (CBMS) is given as

J(ñ, α̃, n, α) = (ñ− n)2 + (α̃− α)2. (17)

Substitute (17) into (12), compute the first partial derivatives
of ñ and α̃, respectively and let them be zeros. Then, we can
obtain the estimated values shown as

α̂ =
N∑

n=1

1∑
α=0

αp̄(n, α |C) (18)

where

p̄(n, α |C) =
p(n, α |C)

N∑
n=1

1∑
α=0

p(n, α |C)
. (19)

Equation (18) has the same form as (14) in [20]. That is,
MMSE could be derived by Bayesian method under the cost
function (17). The cost function of capture-aware Bayesian
absolute estimate (CBAV) is given as

J(ñ, α̃, n, α) = |ñ + n|+ |α̃− α| . (20)

Likewise, substituting (20) into (12), we can obtain the
estimate values given as

n̂ = arg min
ñ∈N

∣∣∣∣∣

[
1∑

α=0

ñ∑
n=1

p(n, α |C)−
1∑

α=0

N∑

n=ñ

p(n, α |C)

]∣∣∣∣∣

α̂ = arg min
α̃∈A

∣∣∣∣∣

[
N∑

n=1

α̃∑
α=0

p(n, α |C)−
N∑

n=1

1∑

α=α̃

p(n, α |C)

]∣∣∣∣∣ .

(21)

The cost function of capture-aware Bayesian uniform esti-
mate is given as

J(ñ, α̃, n, α) =





1, |ñ− n|+ |α̃− α| > ∆
2

0, |ñ− n|+ |α̃− α| ≤ ∆
2

(22)

where ∆ is a very small constant. Substituting (22) into (12),
we give the estimate

〈n̂, α̂〉 = arg min
ñ∈N,α̃∈A

p(ñ, α̃ |C). (23)

The estimate in (23) has the same form as a maximum
posterior probability estimate [19]. Thus, we could also
call it capture-aware maximum posterior probability estimate
(CMAP).

C. Frame Length Adjustment

How to adjust a frame length in DFSA is discussed in [6],
[7], [11], [12]. All of the methods assume that the three kinds
of slots, i.e., idle, collision and successful slots have the equal
durations. However, in real RFID systems, such as EPC C1
Gen2 standard [23] and ISO 18000-6 [24], [25], each kind
of slot does not have the same duration. Further, [11], [12]
do not consider the impact of capture effect on the frame
length adjustment. Here, we consider the frame adjustment
under different durations of the three types of slots and capture
effect. We take a linear model into account. That is, l = rn
[14]. Then, we can obtain

lim
n→+∞

(
1− 1

rn

)n

= e−
1
r (24)

lim
n→+∞

n

n− 1
= 1. (25)

We substitute (2), (24) and (25) into (1), and let β = t0/t1,
γ = tk/t1. Then, the identification efficiency is given by

Ps ≈
e−

1
r

(
1−α

r − α
)

+ α

e−
1
r { 1

r − (1 + 1
r )[(1− α)γ + α]+ β}+ (1− α)γ + α

.

(26)

Let (26) be maximized, and we have

r∗ = arg max
r∈R

Ps (27)

where R is the search range of r. Then, the optimal frame
length can be given as

l∗ = br∗nc (28)

where b·c is a floor integer function. Because the values of
t0, t1 and tk is invariable in RFID systems, β and γ are also
invariable. Therefore, we do not search the value of r∗ in (27)
every time.

D. Description of the Algorithm

In the proposed algorithm, an identification cycle is de-
scribed as follows and the pseudo-code operation of a reader
is shown in Algorithm 1.
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Algorithm 1. Pseudo-code operation of a reader
DynamicALOHA(l)

ck = 1, l = l0
while (ck > 0)

Interrogate(l)

for slot = 1 to m

receive tag responses
if detect more than one tag responses in a slot

ck + +

end
end
if ck > 0

l0 = Kl0 // from (11)
end

end
ck = 1

while (ck! = 0)
c0 = 0, c1 = 0, ck = 0

Interrogate(l)

for slot = 1 to l

receive tag responses
if detect no tag responses
c0 + +

else if detect only one tag response
c1 + +

else if detect tag collision
ck + +

end
end
[n, α] = Bavesian estimate(l, c0, c1, ck);

//estimate by (18), (21) or (23)
l = Adjust(n, α, r∗); //optimal length from (28)
Interrogate(l)

for slot = −1 to m

receive tag responses
if detect more than one tag responses in a slot

ck + +

end
end
if ck > 0

l0 = Kl0 // from (11)
end

end

Initially, the reader sets a frame length to l0 and implements
a function Interrogate(·) to transmit a query command with
l0. Tags will randomly select slots in the initial frame to
respond. If the first m slots are all non-idle, we set l0 = Kl0
from (11) and the tags will re-select slots. If not, the reader
will implement the function Interrogate(·) with the set value
of l0 and count all of idle slots, successful slots and collision
slots in the frame. Then, the reader implements a function
Bayesian estimate(·) to estimate the tag population and the
probability of capture effect by (18), (21) or (23). The next
frame length is adjusted from (28) with the estimated results
above.

Finally, the reader judges whether all tags are identified or
not. If the number of collision slots is zero, no tags need to

be identified. Thus, the identification cycle ends.

V. NUMERICAL RESULTS

A. System Setup
In this section, we give the numerical results to verify the

performance of proposed algorithm. In numerical experiments,
we consider a scenario with a single reader and a set of
passive tags that enter the reader’s zone and do not leave until
all the tags are successfully identified. Numerical results are
from Monte Carlo method and each result is the mean of 500
independent experiments. We compare the proposed CBMS,
CBAV and CMAP estimate with the existing Vogt, traditional
Bayes, CMEBE, CAE and MMSE algorithm, which are as
follows:

1) CBMS: Capture-aware Bayesian mean square estimate
derived from (19).

2) CBAV: Capture-aware Bayesian absolute value estimate
derived from (21).

3) CMAP: Capture-aware Bayesian maximum posterior
probability estimate derived from (23).

4) Vogt, traditional Bayes, CMEBE, CAE and MMSE are
the algorithms in [7], [8], [10], [13], [20], respectively. Note
that CAE requires computing the logarithm of the number of
idle slots in a frame. Hence, the estimated value will be ∞
when the idle slot is zero. In practice, however, the number of
tags could not be infinite. To assure CAE to have an estimated
value in this case, the value is chosen as the upper bound of
a set, N , i.e., N which is the same as in Vogt and CMEBE
above.

Parameter settings of above algorithms are as follows:
1) The initial frame length is l0 = 128.
2) The search range of the tag population is N = {c1 +2ck

≤ n ≤ N |n ∈ Z}, where N = 1000.
3) The search range of the probability of capture effect is

A = {0, 0.1, 0.2, . . . , 1.0}.
4) m = 3, i.e., setting the frame length from the first three

slots.
5) K = 2, i.e., the set frame length is twice length than

before. We choose 2 instead of other larger integer, because
larger adjusted frame length will lead to more idle slots.

6) The durations of each kind of slots are t0 = 50 µs, t1 =
400 µs and tk = 200 µs [13], respectively.

Here, we give the details of the choice of m = 3 and K = 2
in the experiment. Fig. 4 gives the comparison of self-adjusted
frame length under different values of m and K, and the other
parameters are l0 = 128, n = 600 and 0 ≤ α ≤ 1. As we
can see from Fig. 4, the curve of optimal length descends as α
increases, also do the curves under different values of m and
K. From Fig. 4, when α < 0.6, the curve of K = 2 and m =
3 is more close to the curve of optimal length than the others.
Besides, when α > 0.8, the curve of K = 2 and m = 3 is
close to the curve of optimal length like that of K = 2 and m
= 4 and K = 4 and m = 4. Though the curve of K = 2 and
m = 3 is not good than the two curves of K = 2 and m =
4 and K = 4 and m = 4 when 0.6 < α < 0.8, it is still not
far from the curve of optimal length. From Fig. 4 and Table
I, we find that the set of K = 2 and m = 3 would be a good
choice.
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Fig. 4. Comparison of self-adjusted frame length under different values of
K and m.

B. Estimation Errors

In this subsection, we measure the error of estimating the
number of tags in a frame. The error for the number are defined
as

e =
∣∣∣∣
n̂−n

n

∣∣∣∣× 100% (29)

where n̂ and n denote the estimation and the actual value of
tags, respectively.

Fig. 5 shows the estimation errors e of tag population
for Vogt, traditional Bayes, CMEBE, CAE, MMSE, CBMS,
CBAV and CMAP, respectively when n = 200 and the proba-
bility of capture effect varies from 0.1 to 1. From the figure, the
curves are very close to each other and approximately between
3 % and 8 % except for Vogt and traditional Bayes. The two
curves increase in value with the probability of capture effect.
The results show that the proposed estimate, MMSE, CMEBE
and CAE can all estimate the tag population accurately when
the tag population is not greater than the initial frame length.
Further, MMSE and CBMS have the same curve because
MMSE is actually a Bayesian estimate when the cost function
is a mean square error function. Moreover, the performances of
proposed algorithms are a litter better than the others’ when
α < 0.8. On the other hand, the estimation errors of Vogt
and traditional Bayes are much more, especially when the
probability is beyond 0.2. The reason is that the two algorithms
do not consider the capture effect, while the other estimates
have the capture-aware estimation.

Fig. 6 shows the estimation errors e of the above algorithms
when n = 600 and the other parameters are chosen the same
as Fig. 5. From the figure, CMEBE and CAE’s curves fluctuate
between 18 % and 31 % while the proposed estimate curves
are no more than 15 % and much lower than the two former
estimates. In addition, MMSE is also an algorithm with lower
estimation errors and has the same curve as of CBMS. On
the other hand, the estimation errors of Vogt and traditional
Bayes are still much more and increase from 25 % to 80 %.

The reason is that, the proposed estimates consider the number
of idle slots c0 = 0 in large-scale identification environment.
Although CMEBE and CAE could be aware of capture effect,
on the contrary, they do not work better when c0 = 0.

Fig. 5. Estimation errors of tags (l = 128, n = 200, K = 2, m = 3).

Fig. 6. Estimation errors of tags (l = 128, n = 600, K = 2, m = 3).

C. Identification Efficiency

In this subsection, we will demonstrate the comparison of
identification efficiency of each algorithm. Fig. 5 gives the
identification efficiencies of Vogt, traditional Bayes, CMEBE,
CAE CBMS, CBAV and CMAP, where the frame length is
adjusted from the estimated values of the algorithms above,
respectively. The identification efficiency is given by

Ps =
c1t1

c0t0 + c1t1 + cktk
(30)

and the tag population is n = 600. From the values of t0, t1
and tk, we can get β = 0.125 and γ = 0.5. The optimal frame
length adjustments in the algorithms above are as follows.
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The adjustment in Vogt is [10]

lnext = n̂− c1. (31)

The adjustment in traditional Bayes is [13]

lnext = 1.3 ∗ (n̂− c1). (32)

CMEBE and CAE adopt the same adjustment [7], [8]

lnext = α̂ + (1− α̂)(n̂− c1). (33)

The adjustments in CBMS, CBAV and CMAP are from (31)
−(33). The result values are given in Table II.

TABLE II
THE VALUES OF Ps AND l∗ WHEN n = 600

α l∗ Ps

0.1 960 0.7349

0.2 900 0.7530

0.3 780 0.7726

0.4 720 0.7938

0.5 600 0.8172

0.6 540 0.8432

0.7 420 0.8728

0.8 300 0.9074

0.9 180 0.9496

1.0 60 1.0000

where t0 = 50µs, t1 = 400µs, tk = 200µs [13]

From Fig. 7, the curves ranging from the highest to the
lowest are, the proposed algorithm curves, CMEBE and CAE
curves, and traditional Bayes and Vogt curves. From the result,
the algorithm’s identification efficiencies are related to their
estimation errors. The algorithm with lower estimation error
has higher identification efficiency, while the algorithm with
higher estimation error has lower identification efficiency.
Moreover, CBMS, CBTV and CMAP set the optimal frame
length based on non-isometric time slots. Therefore, the results
also show that the method of non-isometric time slots performs
better than that of isometric slots. And with the self-adjusted
frame length method, the frame length can be close to the
optimal length in each frame including the initial frame length,
which visibly improves the identification efficiency.

VI. CONCLUSION

In DFSA algorithms, we consider the influence of both
capture effect and large-scale identification on the performance
of RFID identification efficiency. For this reason, we propose
the novel Bayesian estimates, CBMS, CBTV and CMAP. From
our derivation, it is proved that the conventional estimate
MMSE and MAP estimate are actually Bayesian estimates
and could be obtained from CBMS and CMAP by different
cost functions. The numerical results show that the estimation
performance of the proposed algorithms is close to that of
conventional algorithms when the tag population is small.
Under large-scale RFID tags environment, however, the esti-
mation errors of proposed algorithm are obviously lower than
those of conventional algorithms. In addition, we derive the

optimal frame length under different durations of an idle slot,
a collision slot and a successful slot. The numerical results
show that, the identification efficiency of the proposed frame
length is higher than that of conventional algorithms. It can be
deduced from the identification efficiency performance that the
proposed estimation method would adapt better to the large-
scale RFID tags environment with capture effect.

Fig. 7. Identification efficiency (l = 128, n = 600, K = 2, m = 3).
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