IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, VOL. 71, 2022

5502514

Feature Selection and Cross Validation for
Physical-Layer RFID Counterfeit
Tag Identification

Haifeng Wu™', Wei Gao

Abstract— Since radio frequency identification (RFID) tags are
easily cloned, tag anticounterfeit is an important issue for RFID
security. Physical-layer identification is a feasible method for
the anticounterfeit, and it introduces machine learning to train
classification on tag physical-layer signals. However, there are
still some problems further investigated for the method, such as
features of tag and cross validation. For this, this article proposes
a new learning method, which extracts time- and frequency-
domain statistics not only from the raw tag responding signal
but also from its expected, noise, and normalized signals and
adopts feature selection to classify authentic and counterfeit tags.
In addition, this article also proposes a new cross validation to
objectively test the performance of the physical-layer method.
This experiment uses a software-defined radio to collect data
from 140 tags of seven classes from three manufacturers. The
results show that the classification accuracy of this new method
is 4%-5% higher than that of the traditional method. Besides,
under the new cross validation, the classification accuracy of all
the physical layer methods will drop by 8%—-10%. From this, we
get an important conclusion that the performance of the physical-
layer methods will depend on whether a training set has attacking
tag data.

Index Terms—Cross validation, feature selection, radio fre-
quency identification (RFID), security.

I. INTRODUCTION

ADIO frequency identification (RFID) is an automatic

identification technology [1], which reads information
from electronic tags with unique identification (ID) through
wireless communication, without any contact and manual
intervention. This technology is considered to be one of the
most promising technologies in market in the 21st century and
has been applied in smartphones and 5G communication [2].
A simple RFID system consists of a reader, tags, and back-
end databases [3], where the reader sends a command to
tags through a wireless channel. After the tags receive the
command, they will respond and send their ID information.
The back-end database can retrieve the corresponding item
information according to IDs. In theory, tags can respond to
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commands sent by different RFID readers, and any attack-
ers with a reader can freely read the information from the
tags lacking access control, such as electronic product code
(EPC) [4]. Due to the low cost of RFID tags, the information
read can easily be cloned into another tag. If the tag does
not have anticloning, the attackers can counterfeit the tag and
obtain illegal benefits [5]. For this, communication security
has always been an important issue for RFID.

In the communication security issue, data encryption and
authentication protocols [3] are common solutions. However,
the low cost of RFID tags determines their simple structure
and limited computing power. High-performance encryption
and authentication protocols will increase the complexity
of tags, while using lightweight encryption, attackers with
sufficient resources can use brute-force search to steal the data.
Moreover, for simple password methods, once the password
is leaked, the data will be easily stolen, such as applications
in an RFID supply chain [6]. For the problem of encryption,
some researchers have proposed some methods to protect tags
itself, rather than data, through some hardware to defend
against counterfeit tags, such as inductive coupling [7], [8] or
transmit antenna [9]. However, although the use of hardware
improves the security, it increases the cost of RFID tags.
In addition, if the hardware circuit is changed too much, the
compatibility of the tags will not be strong, and they can only
be used in a specific system with the hardware, which limits
its applications.

In recent years, many studies have shown that the signal
to which the electronic tag responds is unique at a physical
layer [10] and has a physical unclonable function (PUF). Since
the PUF of each tag is different, the PUF response will not
be the same even if the input is the same, regardless of
whether the EPC code of the tag or even the manufacturer
is the same. More importantly, PUF is unpredictable and
unrepeatable, so it can be applied to tag authentication and
now has become a popular method for RFID security. The
physical-layer identification methods are based on PUF and
machine learning and extract features from the tag responding
signal as a fingerprint [10], such as time- or frequency-domain
statistics of the signal [11], [12], [13], [14]. The methods only
need to load the corresponding algorithm on an RFID reader
and do not need to change the circuit on tags. Therefore, they
will not increase the cost of the tags, have good compatibility,
and are suitable for low-cost tag authentication.
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However, there are still some problems in the physical-
layer identification methods, which need to be further inves-
tigated. First, what features to extract from tag responding
signals is not fully discussed. Some features have statistical
significance in some types of tags but not necessarily in other
types [15]. How to extract or select features with significance
should be further investigated. Besides, the results from the
existed evaluation for the physical-layer identification methods
sometimes are not objective. The existed evaluation uses the
classic cross validation [14] to test the classification accuracy
of the authentic or attacking tags. In application, however, the
information of attacking tag may not prior known and thus is
difficult to be trained in advance. Therefore, the classification
accuracy from the cross validation is not necessarily accurate.

For the above problems, this article proposes a new feature
extraction to better identify counterfeited tags to improve the
RFID security and redesign a cross validation to evaluate the
security. In the feature extraction, we extract statistics not only
directly from the responding signal of a tag but also from the
processed EPC, the noise, and the normalized signal of the
tag itself. To obtain effective features and remove redundant
ones, moreover, we also use feature selection. In addition, the
designed cross validation is closer to engineering applications,
where the type of attacking tags in a testing set does not exist
in a training set. In experiments, we use Universal Software
Radio Peripheral (USRP) to test a total of 140 tags with seven
types from three manufacturers. The experimental results show
that the classification accuracy of the proposed method is 4-5
percentage points higher than that of the traditional method
after the classic fivefold cross validation. In addition, the
experiment uses the new validation to evaluate the security.
The results show that under the new cross validation, both
the traditional method and the proposed method have lower
classification accuracy. Therefore, we can draw a conclusion
that, if the information of counterfeited tags in a training set
is incomplete, for the physical-layer identification methods
in application, the anticounterfeiting performance will be
affected.

II. RELATED WORK

The RFID security is essentially a wireless communication
security issue, where some common solutions are authentica-
tion protocols. In a popular standard, EPC C1 Gen2 [4], its
protocol specifies that a password can be set to control a tag
access, but the security is low. Once the password is leaked,
the data can be easily stolen. A complete RFID authentication
protocol should be able to prevent tags from being tracked,
cloned, eavesdropped, and leaked [3]. Mature authentication
protocols use symmetric and asymmetric encryption [16], [17],
[18], [19], which can resist most common attacks. However,
due to the high complexity of the encryption, applying them
to RFID will inevitably increase the cost. For this, some
lightweight authentication protocols [20], [21], [22], [23], [24]
have been proposed, which support authentication algorithms
for random numbers and one-way hash functions. To better
adapt to the low cost and limited resources of RFID, in addi-
tion, some ultralightweight authentication protocols [25], [26],
[27], [28], [29] have also appeared, which use simple bitwise,
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trigonometric, and adding operations. Whether mature or light-
weight authentication protocols, there should be a compromise
when applied to the RFID security. Complex authentication
algorithms are more secure but increase the cost of RFID.
On the contrary, simple algorithms are more suitable for
low-cost tags, but with reduced security. In this regard, this
article only adopts a technical route different from encryp-
tion to achieve anticounterfeiting because it does not require
changing the structure on the tag end and thus has better
adaptation.

If the encryption authentication is called a software security
method, then there are some hardware ones. The so-called
hardware methods use the hardware of the RFID system to
resist attacks. One type of hardware methods is to design some
new logic gates [30], [31], adders [32], and even baseband
circuits [33] on a tag to adapt to some lightweight encryption.
Another type of methods leverages some additional hard-
ware without changing the circuit of the tag itself. In this
type, various types of hardware can be added. For example,
an antenna array is added on a tag [9] and noises are mixed into
signals that a reader sends. Another example is some methods
based on an inductive coupling effect [7], [8], [34], where an
additional tag is placed next to the tag to be read and the effect
will create a unique fingerprint. Regardless of the method of
changing the tag circuit or additional hardware, the designer
should consider the compatibility of the new system, whether
the changed one can be applied to the original one, such as the
system supported by EPC C1 Gen2. Even if the new system
can be compatible with the original one, it is necessary to
consider whether the new hardware brings higher costs and
thus limits its promotion.

In addition to the methods of software and hardware, there
are also physical-layer identification methods. The differences
in manufacturing tag will bring the difference in the cir-
cuits of tags, and thus, they show the difference in their
responding signals on the physical layer. Therefore, authentic
and counterfeited tags can be identified through the features
of the physical-layer signals. According to the features, the
physical-layer identification methods can be classified into
various categories. One is to directly use some physical
quantities of the signal as features, such as the minimum power
response [35], [36] and voltage [37]. Another type is to extract
the statistics of the signal, such as the mean, variance, skew-
ness, kurtosis, autocorrelation, and other statistics in the time-
domain signals [14]. There are also methods for extracting the
frequency-domain features [38] as well as time—frequency fea-
tures [11], [12], [13], [14]. The performance of the physical-
layer identification depends heavily on the extracted features,
and the features with statistical significance will produce a
better performance. However, different features have different
performances on different types of tags, and it is difficult to
find a unified feature that can distinguish all types of tags.
In addition, how to objectively evaluate the performance of the
physical layer identification is also a problem. As mentioned
above, the classes of tags used by attackers may not be
predicted in advance, and thus, there may be a deviation in
the classification accuracy of traditional cross validation in
machine learning.
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Fig. 1. Problem 1: feature extraction.

III. PROBLEM DESCRIPTION

From machine learning, the physical-layer identification
is actually a classification problem. For the classification
problem, no matter what kind of classifier is used, its perfor-
mance depends much on the extracted features. In addition,
which validation method is used is also very important for
the performance evaluation of classification. Next, we will
describe the two problems.

A. Feature Extraction

The tag circuits produced by different manufacturers will
be different during the manufacturing tag. Even with the same
manufacturer, the tag circuits will not be exactly the same due
to the differences in the production time, batches, assembly
lines, and so on. Thus, the signals that the circuits respond to
are also different. The features from the responding signal on
the physical layer embody the difference of the circuits, and
thus, different types of tags can be distinguished by appropriate
features. However, intertag differences tend to be diverse.
As shown in Fig. 1, valid features used to classify data 1 are
not necessarily available to data 2. In other words, the valid
features for classification of the two data may be different.
For example, the phase offset [15] differs in some tags but
not in others. Of course, multifeature joint classification can
be used. After the classifier is trained, more important features
will be given larger weights [39], [40], while less important
features will be given smaller weights. In this case, however,
determining the number of features is still a problem to be
solved. From the characteristics of the classification object, the
more the number of features, the better, because the various
characteristics of the object will be displayed as much as
possible. However, when the number of features is large,
redundancy will inevitably occur. Some features are not only
redundant in classification but also reduce the classification
performance. In this article, we extract features from both
a tag responding signal and its noise and EPC signal, thus
more features than that only from the responding signal.
Since the EPCs of authentic and counterfeit tags are the
same, the difference will be reflected more in their noise
signals. Besides, the normalized EPC signals will also have
differences, such as frequency drift [41]. In tests, we find that
a classifier with a large number of features does not perform
better than that with a small number of features. On the other
hand, a classifier with fewer features will not be better either.
Thus, there are actually some optimal values for the number
of selected features. Too much will create redundancy, and
too little will result in information loss. Therefore, the first
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Fig. 2. Problem 2: traditional cross validation for classification of two classes.

problem to be addressed in this article is which valid features
should be retained and which redundant features should be
removed, regardless of any types of tags.

B. Classification Test

In general, classical cross validation can be used to evaluate
the performance of the physical-layer identification methods.
In the validation, data are randomly divided into two parts:
one is used as a training set and the other is used as the
testing set. Besides, the data classes in the testing set should
also exist in the training one. Fig. 2 presents a fivefold cross
validation, where classes 1 and 2 are authentic and attacking,
respectively. From the figures, both the training and testing
sets have the attacking class. However, the condition is not
necessarily guaranteed in the application. Since it is impossible
to predict which tag an attacker uses, although the training set
can contain as many classes as possible, it is probable that
there will be a lack of a class of tags from the attacker. If the
validation model in Fig. 2 is used to evaluate the physical-layer
identification methods, the result may not be accurate. Since
the attacking class exists in the training set, the attacking class
may also be identified in the testing set. From this, it will
be falsely high for the classification accuracy to evaluate the
physical-layer identification method by the traditional cross
validation. Therefore, the second addressed problem in this
article is how to adopt a validation model that can more fairly
evaluate the physical-layer identification methods.

IV. ALGORITHM
A. Feature Extraction

The traditional method only extracts features from a tag
responding signal, and however, the noise signal and the
expected EPC signal of the tag also carry key information.
Thus, the signal mentioned above should also be considered.

First, perform in-phase and quadrature (IQ) demodula-
tion [38] on the tag signal received by a reader and compute
the modulus of the 1Q signal. Then, cut the EPC segment from
the modulus signal as the final responding signals a(n), where
n=1,2,..., N are sampling points.

Next, cluster the modulus signal to obtain a cluster center
vector V = [vg, 01]7, which is expressed as

V = clufa(n)] (1)

where clu[-] is a clustering function and vy and v; are clus-
tering centers corresponding to symbols 0 and 1, respectively.
Note that, which clustering center is O or 1 is unknown. From
EPC C1 Gen 2, however, a tag will have a silent period before
its RN16, where there is only a carrier leakage signal [4].
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Fig. 3. Clustering in the modulus of a tag’s IQ signals.

Thus, the average value of the carrier leakage will correspond
to symbol 0. Fig. 3 shows the clustering process. First, v is
an average center during the silent period. Then, one center
closer to v, should be vy and the other should be v;. From
the cluster center point, a Euclidean distance decision for a(n)
will get an expected EPC signal

a.(n) = decla(n)] (2)
where

dec(s) — [0, if [x — vol < x — il 3
1, if [x —oy| < |x —vol.

Theoretically, the expected signal of the authentic tag and
the counterfeit tag should be the same because both EPCs are
the same. However, due to the frequency drift, their period
or frequency will be different. Thus, the relevant features
extracted from them will also be different.

Third, due to the difference in the transmission power,
reading distance, and tag sensitivity, the amplitudes of the tag
signals are different. To eliminate the difference, a responding
signal can be normalized as

ap(n) = S0, 4)
01 — Do

Equation 4 will normalize the received signal to 0-1, so as
to reduce the difference between the signal amplitudes of each
tag.

Finally, subtracting the normalized signal from the expected
signal will produce the noise signal

an(n) = a,(n) — a.(n). (5

If the difference in frequency drift is ignored, the expected
EPC signal of each tag signal should be the same. Thus, the
difference between signals will be more reflected in the noise
signal in (5).

After processing above, we will get the expected signal
a.(n), the normalized signal a, (n), and the noise signal a,(n),
together with the original responding signal a(n), a total
of four groups of signals. If the four ones are uniformly
represented by x(n), the mean u, variance o2, maximum
autocorrelation R, Shannon entropy H, second-order center
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distance D, skewness S, and kurtosis K extracted from them
are expressed as

1 N
U= ;x(n) (6)
1 N
Uzzm;[x(n)—u]z @)
N
R = max, ZX(n)x(n + 1) 3)
n=1
log, P(X;)
H=-PX) 2, ©)
1< |
D=2 () —w)’ (10)
n=1
1 N
S = m;[x(n)—uf (11)
1 N
K = m;”(”) —ul* (12)

where X; is the ith value of x(n) after quantization. Also,
we extract the signal spectral features such as centroid fre-
quency, mean frequency, root-mean-square frequency, and
frequency standard deviation, which can be expressed as

_ X SaP®)

FC .
> P()
N _ 2
Zn:l P(n)
1 N
MF = 5 2, P() (15)
N
PMSF = | 2=t i P() 06

>N P(n)

where P(n) is the power spectrum of the nth sample point and
[u 1s the nth sample point’s frequency. After feature extraction,
each group of signals produces seven time-domain and four
frequency-domain features. Thus, four groups of signals will
have 44 features. We will use the features to classify tags later.

B. Cross Validation

Identifying authentic or counterfeit tags is a classification
problem, and cross validation can be used to evaluate the
classification accuracy. As mentioned above, traditional cross
validations sometime are not objective. Here, we present a new
K -fold cross validation, where the class of the attack tags does
not exist in a training set.

Let X; = [xl.(l),xi(z), o ,xl.(M)] be a vector consisting of
M features from the ith tag and form the vector and its
classification label y; into a cell y; = (X;,y;). If a class

I has [ tags, a cell set of the tags can be denoted as
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Fig. 4. Proposed cross validation, where the class of attacking tags is not
in a training set.

X, = {li =1,2,...,1}. Then, divide the set A} into two
subsets XIS and X satisfying

v =x (17-a)
xnx’ =0 (17-b)
1&71/1%5| = (K — 1)/K x 100% (17-¢)
where [ = 1,2, ..., L. Suppose that a class k is used as the

authentic class and a class j used as the attack one, where
k# jand k, j € {1,2,..., L}. Then, a training and a testing
set can be expressed as
oS s S vs )
Skj =AU U X UA - A
T T
Ti,j = & UX;

(18)
19)
respectively, where )?”Sl is the trained counterfeit tag set and

m=1,2,...,L, m # k and m # j. Note that, the elements
of the set are randomly from X S ie.,

m>

xS cas (20-a)

and its cardinal number satisfies
|/'?"f| = |/?ns , forany m #n (20-b)
|Un @S] = |7 |- (20-¢)

Equation (20) ensures that the size of the total counterfeit
training sets is equal to that of the authentic training set.
For (19), due to k # j, there are Ai = L(L — 1) combination
in the training and the testing set, as shown in Fig. 4. From
the figure, X jT as an attacking tag set (denoted by red), its
class j does not appear in the training set. This means that
the class of the tag by an attacker is not prior known, so it
cannot be pretrained.

C. Feature Selection

Since there are many features extracted in Section IV-A, it is
necessary to retain valid features and remove redundant fea-
tures. A commonly used solution is feature selection. Feature
selection is usually categorized into filtering, wrapping, and
embedding. The latter two feature selection methods involve
choosing a classifier and adding a validation set in addition
to the training and test sets. In the proposed cross validation,
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the classification labels of the training set and the test set are
not consistent, and thus, the wrapping and embedded feature
selection may be prone to overfitting. Here, this article will
use the filtering method. Next, we will describe how to select
features in the new cross validation.

Let a cell be y = (X, y), where X =[x, x@  x®)]
is a tag’s feature vector and y is its classification label. If the
cell is in the training set & ;, i.e., ¥ = (X,y) € S j, then
we can sort the feature weights w.m, m = 1,2,..., Mvia
filtering feature selection and then select W features with the
largest weight, which can be expressed as

, Pw) = argmax @, . 21

m

<p19 P25

From (21), a new cell y5 = (X5, y) can be obtained
where X5 = [x®) x(2) x(w)] s a vector of the selected
features. All of the new cells will form into a new training
set ‘S_'i,j, ie.,

1 =(X%y) e &, (22)

Similarly, the cell x” = (X', y) in the testing set can be
obtained, and the new set 7; ; can also be obtained, i.e.,

1" =X"y) e Th; (23)

where X7 is a vector of the largest weights features in the
testing set.

After the feature selection, cross validation can be per-
formed. If the weight w of the classifier f.,s(-) satisfies

y= fclas(w, XS), (XS, y) € Sk,j
the training will complete. Then, test results are obtained by
)A}:fclas(w,XT), (XT9y>E,Tk,j~

Comparing the test label y with the expected label y can
produce the classification accuracy. The steps of the algorithm
in this section can be seen in Table I.

In the above feature selection, the number of selected fea-
tures W is an important parameter that affects the classification
performance. If W is too large, the performance of selection
will reduce. In an extreme case, W is equal to the original
number of features, and it is equivalent to no feature selection.
If W is too small, the key classification information is easily
lost. A common method is to introduce a validation set. Try
different W values in a test set, take the value of W with
the highest classification accuracy in the test set as that in
the validation set, and get the final classification accuracy.
As mentioned above, however, the classification information
of the attack label is unknown in advance, so it cannot be
pretrained or pretested. Therefore, introducing the validation
set will also lead to overfitting. In application, we can choose
an intermediate value. The details of the parameter values can
be discussed in Section V.

(24)

(25)

V. EXPERIMENT SETUP

In this experiment, several different classes of tags will be
selected as test ones. First, a tag writer writes the same EPC
code to all tags to eliminate the influence of different EPC
codes on the identification of authentic and fake tags. Then,
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TABLE I
ALGORITHM STEPS

input:

Tag responding signal a(n)
output:

Classification label
known conditions:

Feature selection algorithm

The number of feature selections W

steps:

(DSignal processing: get the expected signal ae(n) , the
normalized signal @, (7) and the noise signal @, (n) from (1-5).
@  Feature Extraction: extract the feature
X =[x, x? .. x*] of from (6-16).

®) Set division: divide data into a training set SiA, and a test set
T, . from (17-20), or from a K-fold cross validation like Fig. 4.

(DFeature selection: get a new training set S, ; andanewset T, ;

from (21-23).

®Train & Test: compute the label P from (24-25).

vector

a reader is used to obtain the EPC signal of each tag, and
some features are extracted from the signal as the input of
a classifier. Finally, the experiment sets one class of tags as
true and the rest as false, testing the classification performance
after many times repetition.

A. Data Sources

The data in this experiment come from passive UHF RFID
tags specified by EPC C1 Gen2, and 140 tags of seven classes
commonly found in the market. The seven classes of tags are
manufactured by three manufacturers, as shown in Table II.
Before collecting data, write the same EPC code to all of
the 140 tags. The writer used is a reader from Guangzhou
Wang yuan Electronics and its system parameters are shown
in Table III.

The data collection is completed by an ultrahigh-frequency
RFID system and a USRP software radio [23]. The sys-
tem follows the EPC C1 Gen2 standard, and the software
is implemented by GNU Radio. For detailed parameters,
please refer to Table IV, and the code download address is
https://github.com/nkargas/Gen2-UHF-RFID-Reader.

During each data collection, only one tag is placed in front
of antennas, and other tags are not within the magnetic field
of the antennas to reduce the risk of tag collisions. All data
collection is not performed in an isolated environment, which
may include thermal noise, cell phone noise, wireless network,
and radio frequency noise. The tags are randomly placed in a
rectangular area formed by two antennas, as shown in Fig 5.
Each tag records 10 s of data, randomly intercepts the signal
containing a silent period and an EPC code, and stores it in a
MATLAB format. Finally, 140 tags will produce 140 tag data.

The tags in Table II adopt the technical standards of Alien
Company, which is the most trusted RFID tag supplier in the
world (https://www. alientechnology.com/) and its tags have
passed the EPC C1 GEN2 standard. The tags in Table II are
the common Alien tag models on the market, which have
good generalization. The parameters of the UHF100U reader
in Table IIT also comply with ISO 18000-6C protocol and EPC
C1 GEN2 standard and can read and write any tags meeting
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TABLE 11
TAG MODEL AND MANUFACTURER

Class Model Manufacturer

1 Alien9640 Guangzhou Wang yuan Electronics
2 Alien9662 Shenzhen Qibao Technology

3 Alien9654 Shenzhen Qibao Technology

4 Alien9662 Guangzhou Wang yuan Electronics
5 Alien7017 Guangzhou Wang yuan Electronics
6 Alien9662 Nanjing Lejay Technology

7 Alien9654 Nanjing Lejay Technology

TABLE III
PARAMETERS OF THE READER WRITING EPC TO TAGS

Parameter Description
Manufacturer Guangzhou Wang yuan Electronics
Model UHF 100U
Frequency 865~868MHz or 902~928MHz
Standard EPC C1 Gen2
Distance 0-0.1m
Communication port ~ USB
Voltage DC+5V
Maximum power 4W
TABLE IV

PARAMETERS OF USRP

Parameter Description
Motherboard USRP N200
Daughter board RXF900
Antenna

Quantity 2

Type Circularly polarized

Gain 7dBic
Distance 0.5-1.5m
Link frequency 40kHz
Maximum queries 1000
Encoding FMO
Transmission power 17.8dBm

Emission amplitude 0.1
Sampling frequency  1000kHz

the above standards. In this experiment, its role is to write the
same EPC code for each tag and make the tag as a counterfeit
one.

B. Classification and Algorithms

This experiment uses the following two fivefold cross-
validation methods to evaluate algorithms.

1) Fivefold Cross Validation I: There are L classes, where
if the kth is authentic, then it will be used for the traditional
fivefold cross validation of the binary classification with each
of the jth classes, j = 1,2,...,L, j # k, as shown in Fig. 6.
The classification accuracy of the kth label will be the average
of the binary classification results for each test set 7}/ ] Fk

2) Fivefold Cross Validation II: There are L classes, where
if the kth is authentic, then it will be used for the traditional
fivefold cross validation of the binary classification with each
of the jth class, j = 1,2,..., L, j # k respectively, shown
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Fig. 5.

Experiment setup, where a USRP reader collects tag data.
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Fig. 6. Fivefold cross validation I.

in Fig. 4. Note that the jth class is an attacking class, not in
the training sets. The classification accuracy of the kth label
will be the average of the binary classification results for each
test set Tk/,j, j #k.

This experiment evaluates the performance of the following
algorithms for different features or feature selection.

3) Seven Without FS: Using the method of literature [14],
the seven statistics in (6—12) are extracted from the original
responding signal, and the classification is performed directly
without feature selection.

4) PSD Without FS: Using the method of literature [10], this
method can identify genuine and fake RF signals by extracting
the PSD fingerprint feature of the signal.

5) Twenty-Eight Without FS: The expected, normalized, and
noise signals are obtained from (1-5), the method of [14] is
used to extract seven statistics in (6—12) for the above signal
and the original responding signal, a total of 28 features,
and the classification is performed directly without feature
selection.

6) Seven/Fourteen/Twenty-One With ReliefF: The algorithm
in Table I is used for feature extraction and feature selection.
The feature selection method adopts ReliefF algorithm [39],
realized by a function relieff in Statistics and Machine Learn-
ing Toolbox of MATLAB 2021la. The number of feature
selections is 7, 14, or 21, that is, W =7, 14, or 21.

7) Seven/Fourteen/Twenty-One With Chi2: The algorithm in
Table I is used for feature extraction and feature selection.

5502514

The feature selection method adopts a chi-square test algo-
rithm [40], realized by a function fscchi2 in the Statistics and
Machine Learning Toolbox of MATLAB 2021a. The number
of feature selections is 7, 14, or 21, that is, W =7, 14, or 21.

8) Forty-Four Without FS: Four frequency-domain features
are extracted from four signals, a total of 16 features, and then
combined with the 28 features proposed in this method, a total
of 44 features W = 11, 22, or 33.

9) Eleven/Twenty-Two/Thirty-Three ~ With  ReliefF/Chi2:
Four frequency-domain features are extracted from four sig-
nals, a total of 16 features, and then combined with the
28 features proposed in this method, a total of 44 features
W =11, 22, or 33.

10) Two/Four/Six With ReliefF/Chi2: The statistics in
(6-12) are extracted from the original responding signal, and
then, the feature selection is performed. The feature selection
method adopts ReliefF or chi-square. The number of feature
selections is 2, 4, or 6.

The classifier adopted in this experiment is a support vector
machine (SVM), which is implemented by a function fitcsvm
in MATLAB2021a Statistics and Machine Learning Toolbox.
The classification accuracy is expressed as acc, which is
defined as

TP + TN
TP + FP + FN + TN
where TP is the number of true positives, TN is the number

of true negatives, FP is the number of false positives, and FN
is the number of false negatives.

acc = (26)

VI. EXPERIMENTAL RESULTS
A. Preprocessing Results

The signal collected by the USRP software radio platform
is the sampling point signal of the real part and the imaginary
part after demodulation of the signal communicated by the
reader and the tag. Compute the modulus of the real part and
imaginary part of the collected signal, and then, intercept a
complete communication signal, as shown in Fig. 7. In the
figure, the complete signal includes query, RN16, ACK, and
EPC signal, which are consistent with EPC C1 Gen2. The
main signal used to classify the tags is the EPC segment,
as well as the normalized, expected, and noise signals via
(1-5), as shown in Fig 8. As can be seen from the figure,
the normalized signal is mainly concentrated around O and 1,
the expected signal is a binary signal, and the noise signal
is the difference between the above two.

In addition, we present the spectrogram of the tag signal.
Fig. 9 shows the spectrums of the two tags, which reach more
than 20 dB only on the lower frequency band and are below
—20 dB on the rest of the frequency bands. One reason is
that no noise of other frequencies is in the test environment.
Besides, the tag signal passes through a low-pass filter [41]
before 1Q demodulation, so the high-frequency noise is also
filtered out.

To show the spatial distribution of the extracted features
in this article, Fig. 10 shows the 3-D display after feature
extraction and dimensionality reduction of two classes from
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Fig. 7. USRP software radio platform collects a complete signal segment

communicated by a reader and the tag, which is the modulus of the real part
and the imaginary part after demodulation of the signal.
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Fig. 8. Responding signal, normalized signal, expected signal, and noise

signal from the EPC segment via (1-5).

TABLE V
EUCLIDEAN DISTANCE BETWEEN TAGS (A.U.)

Calssl | 2 3 4 5 6 7
Classl | 1.73 626 | 590 | 5.61 | 581 |4.68 | 8.77
2 6.26 1.67 | 1.68 | 2.50 | 2.75 | 6.62 | 10.46
3 5.90 1.68 | 149 | 2.31 | 2.66 | 6.36 | 10.26
4 5.61 2.50 | 231 | 252|286 | 542|938
5 5.81 275 | 2.66 |286 297 | 530|925
6 4.68 6.62 | 636 | 542|530 | 143 | 5.46
7 8.77 10.46 | 10.26 | 9.38 | 9.25 | 5.46 | 8.80

the seven tag classes. From the figure, the Euclidean dis-
tances between most of the same class tags are close, while
those between most different classes are far. In Section VI-B,
we present the classification accuracy results after feature
selection from the features. Table V gives seven classes of
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Fig. 9. Power spectral density. (a) One tag’s power spectrum. (b) Other tag’s
power spectrum.
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Fig. 10.  3-D display of the two classes of tags after feature extraction
and dimension reduction, where the feature extraction adopts the 28 without
FS method. Dimensionality reduction adopts PCA, which is reduced from
28 dimensions to three dimensions. Two classes of tags, A and B, are from
the seven classes, that is, classes 6 and 7 in Table II, with a total of 40 tags.

intralabel distances as quantitative analysis, where the diagonal
line is the intralabel distance and the nondiagonal line is the
interlabel distance. As can be seen from the table, the intra-
class distances of most labels are smaller than the interclass
distances.

B. Results of Fivefold Cross Validation I

Figs. 11 and 12 show the average values of the 28 feature
weight for the seven classes, after chi-square and ReliefF
processing in cross validation I, where the weights are normal-
ized. From the figure, the weight value distribution for each
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Fig. 11. Heatmap for the feature weights by ReliefF in different tag classes,

where the weights are normalized and the tag classes are given in Table II.
The 28 features are extracted from the responding, the noise, the expected,
and the normalized signal, and their extraction methods are from (6-12).
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Fig. 12.  Heatmap for the feature weights by chi-square in different tag

classes, where the parameters are the same as in Fig. 11.

class is different. If the features are selected by the weights,
features selected for different classes will be different.

Fig. 13 shows the classification accuracy curves in cross
validation I using 44 features, 28 features, traditional seven
features, and power spectral fingerprint features. From the
figure, there is no feature selection, the 44 feature method
is the highest, and the curve of 28 features is slightly higher
than the curve of seven features, except for six types of RFID
tags, but it is significantly higher than the power spectrum
fingerprint feature. The method with 44 features without
feature selection is about four percentage points higher than
the method with seven features.

Fig. 14 shows the results of chi-square feature selection,
where the seven features are extracted only from the tag
responding signal. From the figure, no matter how many
features are selected, the accuracy improvement is not obvi-
ous. Moreover, the difference between the methods is only
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Fig. 13.  Classification accuracy curves without feature selection in cross

validation I, where the tag class is given in Table II.
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Fig. 14. Classification accuracy curves with feature selection by chi-square
in cross validation I, where the features are extracted only from the tag
responding signals and the tag class is given in Table II.

about 0.5%. Therefore, without additional valid features, it is
difficult to improve the accuracy even after feature selection.
Fig. 15 shows the results of the ReliefF selection method,
which is similar to Fig. 14.

Fig. 16 presents the classification accuracy results using the
chi-square feature selection for 28 features in cross valida-
tion I. As can be seen from the figure, no matter how many
features are selected from the 28 features, the classification
accuracy is higher than that of the traditional seven-feature
method, except for class 6. The average classification accuracy
of the method using feature selection is higher than that of the
traditional method, and the average accuracy is over 90%. The
highest classification accuracy of the method of selecting seven
features is about 4% higher than that of the traditional method.
In addition, from the above results, the average difference of
the methods for selecting three different numbers of features
is only 1%—-2%.
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Fig. 15. Classification accuracy curves with feature selection by ReliefF

in cross validation I, where the features are extracted only from the tag
responding signals and the tag class is given in Table II.
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Fig. 16. Classification accuracy curves with feature selection by chi-square
in cross validation I, where the features are extracted from the tag responding,
the expected, the noise and the normalized signal.

Fig. 17 presents the classification accuracy results using
ReliefF feature selection for 28 features in cross validation I.
Similar to the results of chi-square, the methods with feature
selection perform better than those without selection, no matter
how many features are selected. The improvement of the
classification accuracy is also about 4% and the highest accu-
racy occurs at selecting 21 features. Figs. 18 and 19 present
the classification accuracy results of ReliefF and chi-square
feature selection for 44 features in cross validation I. Similar
to the results of 28-feature selection, the methods with feature
selection perform better than those without selection, no matter
how many features are selected. The improvement of the
classification accuracy is also about 5%.

Fig. 20 shows the classification accuracy and time of the
algorithms, whose values are average for many repetitions.
Besides, the classification time is to train the model once.

IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, VOL. 71, 2022

0.98& T T :
l = — Seven without FS
0.0B& * -3~ twanty-one with ReliefF | |
TR S fourteen with ReliefF
14, Seven with ReliefF
0.94F \ E
\ o}
\ L . 0
02k |\ W S
g 09 ‘ %, # o ‘
< " :
038 R
0.86
084+ 1
0.82 : : :
1 2 3 4 5 6 7
RFID tag class
Fig. 17. Classification accuracy curves with feature selection by ReliefF in

cross validation I, where the features are extracted from the tag responding,
the expected, the noise, and the normalized signal.
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Fig. 18. Classification accuracy curves with feature selection by chi-square
in cross validation I.
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Fig. 19. Classification accuracy curves with feature selection by ReliefF in

cross validation I.

From the figure, the proposed algorithm’s accuracy is higher
than the traditional ones, but its time is more.
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Fig. 22.  PCA clustering diagram.

C. Comparison of Cross Validations I and 11

Fig. 21 shows the classification accuracy histogram under
cross validations I and II, where the number of features
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Fig. 23.  Number of training tags and classification accuracy.

selected by chi-square is 14. Since the results for the number
of features seven or 21 are similar, we give the results only
for 14. Similarly, 44 features also select the middle number
of features, 22 features. From the figure, the classification
accuracy of the proposed and the traditional method in cross
validation II is lower than that in cross validation I.

VII. CONCLUSION AND DISCUSSION

In the RFID communication security, the physical-layer
identification is considered a feasible method to solve tag
anticounterfeiting, and the performance of the method depends
on how to extract features from tag signals. At present, most of
the existing physical-layer tag identification focuses on which
features perform better, such as time—frequency statistics and
the physical quantities of the signal itself. However, no matter
what kind of features will show differences in performance in
classifying different types of tags, it is difficult to classify all
tags through some fixed features. In this article, we increase
the number of features, not only from the received signal
but also from the noise signal, the desired signal, and the
normalized signal, so that the number of features becomes
28 and 44. At the same time, a feature selection method is
used to remove redundant features, retain effective features,
and further improve the classification accuracy.

It is well known that in machine learning, K-fold cross
validation is usually used to test the classification performance.
In the validation, the class in a testing set also appears in
a training one, and the feature selection method often has a
better result in this case. However, in the application, the class
of an attacking tag is not always predictable, so the class of the
attacking tag may not exist in the training set. From that, this
article designs a cross validation where the attacking tag is not
in the training set. In this new validation, it will be necessary to
reevaluate the method of feature selection and even the classi-
fication without feature selection. If the classification accuracy
declines, it means that the performance of the methods may be
falsely high. The algorithm proposed in this article is similar
to semisupervised learning. It is trained by knowing the true
tag label and various fake attack lag, and the corresponding
machine learning model is obtained. Finally, it is tested by
attack tags with unknown label. Fig. 22 shows a tag clustering
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diagram in a 3-D space. From the figure and Table V, the
intraclass distance of most of the tags is smaller than the
interclass distance, which indicates that the use of Euclidean
distance will theoretically distinguish different classes of tags.
Of course, the classification accuracy of unsupervised learning
is usually lower than that of supervised learning, and the
experimental results also show that the accuracy of cross
validation II (unsupervised) is 8%—10% lower than that of
cross validation I (supervised). However, if more fake tags are
trained, the recognition rate of unknown tags by our model
will gradually increase. To this end, we give the result about
the number of training tags classes and classification accuracy.
As shown in Fig. 23, when the number of fake tags’ categories
in the training set increases, the classification accuracy will
also increase. Therefore, we can infer that when there are
enough kinds of tags in the training database, the model for
recognizing tags with unknown labels will also be robust
enough.

In the implementation, we first extracted seven commonly
used features from the raw RFID tag responding signals,
including first-order statistics, second-order statistics, and even
entropy. However, in order to be able to find probable valid
features or to expand the range of features that can be selected,
we process the raw tag signals to obtain the expected, the
noise signal, and the normalized signal, and extract features
from the signals. Since both authentic and counterfeit tags
have the same EPC, theoretically, their expected EPC signals
should be the same, and the difference is mainly shown in
the noise signal. Therefore, it would be reasonable to extract
features from the noise. In addition, since each tag may have
different frequency drift, the period of their expected EPC
signal will also have some differences. Besides, the amplitude
of the response signal of each tag will also be different. For
example, the same tag will have different response amplitudes
at different reading distances. Thus, the signals need to be
normalized to 0 and 1 to eliminate the influence of amplitude
on classification. Finally, we extracted a total of 28 features
from the above signals and then performed feature selection
for classification.

In the experiment, we first find that the method of extracting
28 features does not significantly improve the classification
accuracy compared with the method of seven features, and
the former is only about 2% higher than the latter. However,
if feature selection is performed on 28 features, the highest
classification accuracy reaches 92%, which is about four
percentage points higher than the seven-feature method. The
results show that there are redundant features in the 28 fea-
tures, and removing some redundant features can improve
the classification accuracy. In other words, using only seven
features may have information loss, and adding valid features
can improve the classification performance. The conclusion
is also confirmed by another result that implementing feature
selection from seven features does not significantly improve
the classification performance, only about 0.5%. The reason
is that although the probable redundant features are removed,
the valid features are not increased.

When we select features for different tag classes, further-
more, we find that the weight of the selected features will
change with the tag classes. The heatmaps drawn by the
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feature weights in different tag classes are not the same. For
example, for Shenzhen Qibao Technology Alien9662 tag, the
feature with the largest weight is the maximum autocorrelation
of the received signal, while for Nanjing Lejay Technology
Alien9654 tag, the feature with the largest weight becomes
the mean. Therefore, it is difficult to try to find a few fixed
features that can identify all tag classes. On the other hand,
the feature selection does not select fixed features but relies
on the training data to select features and the feature selection
results vary with the training data. As long as the training data
are suitable, the selected features may be available.

In addition, the experiment adopts two feature selection
methods, chi-square and ReliefF, to test the performance. The
main purpose is to verify whether the method proposed in
this article must depend on a specific feature selection method.
The experimental results show that as long as feature selection
is performed, the classification accuracy can be improved to
92%. Of course, there are still differences between the two
methods. The biggest difference is that the number of features
selected will affect the final classification accuracy. In the chi-
square test, the highest accuracy is when the number of the
selected features is 7, while the number of the features in
ReliefF is 21. How to determine the number is a problem
that needs to be investigated. One popular method is to use
embedded methods, where we add another validation set, find
an optimal number in a testing set, and then verify it in the
validation set. However, there is also a problem that different
data tend to get different feature selection results, shown in the
feature distribution heatmaps. The validation set method may
fall into overfitting if the class validated is not in the testing
set. Carefully observe the experimental results and find that
when the number of features is selected as 7, 14, and 21, the
difference between the three is not very big, about 1%—-2%, but
they all exceed the traditional seven-feature method. Therefore,
as long as feature selection is performed, the classification
accuracy can always be improved, and the number of the
selected features does not necessarily have to take an optimal
value because the fluctuation of performance is not very large.
We can take an intermediate value, such as 14. Note that,
we also try 16 features in the frequency domain, and let
28 features change into 44 features. Experimental results show
that, without feature selection, it is 2% higher than 28 features,
and with feature selection, it is 1% higher than 28 features.
Therefore, the frequency-domain features will be helpful to
classification performance.

Furthermore, it can be speculated that the number of
selected features correlates with classification accuracy. The
current number of selected features is 44, which improves the
classification accuracy by 5%. In future work, if we can extract
some common third-order or even fourth-order statistics to
increase the number of features, the classification accuracy
may be further improved. Of course, some experimental results
in this article have some uncertainties. Due to the limitation
of experimental conditions, the transmitting power of the
USRP device we adopted is limited, and the tag can only
be read in the small magnetic field range of the reader.
Therefore, the amplitude changes of the responding signals
are not large. Moreover, since the tag is closer to the reading
antenna, the noise is small, and the signal-to-noise ratio is
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between 16 and 19 dB. However, the actual environment of
attacking tag may be more complex. Not only the amplitude
of tag responding signal may change, but also the signal-
to-noise ratio may be smaller. Therefore, we also hope that
in future work, tag classification will be carried out under
a more complex and changeable condition, such as some
power-enhancing hardware circuits or antennas to increase the
range of tag reading.

The algorithm code in this article has been uploaded to
GitHub. Its download address is https://github.com/monk5469/
counterfeit-identification.
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