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Abstract
The problem of neural decoding is essential for the realization of a neural interface. In this study, the position of the moving finger
of a macaque was directly decoded through the neuron spike signals in the motor cortex, instead of relying on the synergy of the
related muscle tissues around the body, also known as neural decoding. Currently, supervised learning is the most commonly
employed method for this purpose. However, based on existing technologies, unsupervised learning with regression causes
excessive errors. To solve this problem, weakly supervised learning (WSL) was used to correct the predicted position of the
moving finger of a macaque in unsupervised training. Then, the corrected finger position was further used to train and accurately
fit the weight parameters. We then utilized public data to evaluate the decoding performance of the Kalman filter (KF) and the
expectation maximization (EM) algorithms in the WSL model. Unlike in previous methods, in WSL, the only available infor-
mation is that the finger has moved to four areas in the plane, instead of the actual track value. When compared to the supervised
models, the WSL decoding performance only differs by approximately 0.4%. This result improves by 41.3% relative to unsu-
pervised models in the two-dimensional plane. The investigated approach overcomes the instability and inaccuracy of unsuper-
vised learning. What’s more, the method in the paper also verified that the unsupervised encoding and decoding technology of
neuronal signals is related to the range of external activities, rather than having a priori specific location.
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Introduction

At present, the realization of brain-like intelligence is essential
for the study of the nervous system for the behavior and per-
ception of the external world. Prosthetics, robots, and other
devices that fully realize “brain control technology” through
psychological means are becoming a reality [1]. For example,
tactile mice and wearable technologies can be given to

individuals who suffer from comprehensive impairment of
the visual and auditory channels. This will enable such indi-
viduals to exchange information with the external environ-
ment [2]. Additionally, electroencephalogram and electromy-
ography signals have been used to study the nonlinear in the
brain to achieve a real-time manual reconstruction system for
humeral amputees [3]. These technologies not only have di-
rect positive impacts on the quality of life of impaired users
and their abilities to communicate with the environment but
also provide a new model of human-computer interaction for
both impaired and healthy users [4]. Examples of such appli-
cations include computer game control as well as more com-
plex equipment control such as that involved in orthosis, pros-
thetics, robotic arms, and cognitive robotics [5].

In the process of neural coding, the number of neuron
spikes generated when mapping the external world to brain
activity is collected by a neural recording instrument to estab-
lish a temporal correspondence with external activities.
Conversely, the process of neural decoding involves translat-
ing neuron spike signals obtained from brain activity into
instructions for external motion, which can be used for devices
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such as mechanical prostheses. Because the neural coding
problem has been discussed in detail in the literature [6] and
the human neural coding process itself is being explored con-
stantly and simultaneously [7], we focused on finding a supe-
rior solution to the problem of neural decoding for the position
of the moving fingers of a macaque.

The moving finger of a macaque was introduced as an
early coding problem [8]. A relationship was found be-
tween the spike signals of single neurons in the motor
cortex and the direction of movement in the upper limbs.
Chen et al. presented a linear regression model based on
the sparse Bayesian model. They confirmed that the pri-
mary motor cortex information recorded from the central
anterior gyrus was more abundant than that from the distal
end [9]. In the traditional decoding method, earlier super-
vised learning uses an independent linear method [10],
which simplifies the calculation and can track motion tra-
jectory. At present, the state space model (SSM) is more
commonly used. Czanner et al. established an SSM model
with generalized linear characteristics that is superior to
the traditional model in terms of describing the character-
istics of neuronal activity [11]. Mehdi et al. expanded
upon the implicit SSM model and decoded the neuronal
activity recorded from the primary motor cortex of the
monkey to perform natural 3D stretching and grasping
actions [12]. Rule et al. provided an accurate and efficient
means of capturing neural dynamics by combining the
autoregressive point process generalized linear models
and latent state-space models with point process observa-
tions [13]. Among these models, the neural network algo-
rithm has witnessed gradual progress, and the accuracy of
the decoding performance of nonlinear algorithms such as
time-delay neural network [14] and support vector ma-
chine [15] algorithms has been improved considerably.

In general, machine learning can be divided into supervised
learning, unsupervised learning, and semi-supervised learning
[16]. Supervised learning was proposed earlier and has been
extensively developed. In a study on unsupervised learning,
unsupervised cubature Kalman filtering decoding (UCKD)
[17] was employed to decode the position of the moving fin-
ger of a macaque, using the SSM model. Two SSM models
were utilized, one for training weights and another for
predicting the position of the moving finger of the macaque.
This process resulted in a smaller error on the Y-axis, but a
larger estimation error on the X-axis. Additionally, in some
cases, there was an overall reversal in the Y-axis prediction. In
response to the above problems, this paper proposes the use of
weakly supervised learning (WSL) [18] to solve the issues of
inaccurate estimation of the X-axis and the overall reversal of
the Y-axis. In the unsupervised training model, the Kalman
filter (KF) and expectation maximization (EM) algorithms
were used to decode the position of finger movement; then,
WSL was employed to correctly determine the position of the

moving finger of the macaque, and finally, the corrected mov-
ing position was adopted to train the weight parameters of the
model. The experimental results show that the error in the
finger movement position decoded using the WSL model is
smaller than that in unsupervised learning and is close to that
achieved using supervised learning.

The rest of this paper is organized as follows. The “Related
work” section provides a clear overview of previous research
on unsupervised training of the relevant algorithms. The “Data
collection for the moving finger of a macaque” section con-
cisely describes the data collection process. The applied
decoding algorithms, including relevant mathematics, are
thoroughly discussed in the “Decoding method research”
and “Neural decoding method and steps” sections. The
“Decoding results and analysis” and “Discussion” sections
provide a detailed presentation of the results of each of the
experiments using the various algorithms, as well as their
significance in the context of the research objectives, limita-
tions of this study, and scope for future work. Finally, the
“Conclusion” section concisely summarizes the main contri-
butions of this work.

Related work

Unsupervised training of KF algorithm

In unsupervised training, the SSM model can be used to de-
code the position of the moving finger of a macaque. The state
equation and observation equation can be expressed as [10]

yk ¼ h yk‐1ð Þ þ wk ð1� aÞ
sk ¼ f ykð Þ þ vk ð1� bÞ
where

yk is the position at time k.
k 0, 1, …K-1.
K is the total number of sampling points
sk is the spike potential signal collected at

time k, which is a column vector of Ne ×
1.

Ne is the number of electrodes.
h(•) is the function of a state equation.
f(•) is the function of an observation

equation.
wk is Gaussian white noise with a mean of 0

and variance σ2 [17].
vk ¼ v0k ;½
v1k ;…; vNe−1;k �T

is a Gaussian white noise vector with a
mean of 0 and variance matrix Rv with

diagonal δ20k
�

; δ21k ;…; δ2Ne−1;k � [17].
In addition, the model requires functions h(•) and f(•). A

common method is to regard the observation function as a
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linear function and use the training data to obtain these func-
tions. In this case, Eq. (1) becomes

yk ¼ yk−1 þ wk ð2� aÞ
sk ¼ akyk þ bk þ vk ð2� bÞ
where ak, bk is the coefficient column vector of Ne × 1.

It should be noted that the SSM model formula in Eq. (2)
uses unsupervised training of the KF [10] to predict the finger
position, and it requires the weight coefficients ak and bk in the
SSM. In this study, the iterative updating of the weight coef-
ficient was performed using the least squares (LS) approach
[19]:

cW ¼ Y† S ð3Þ

Rv ¼ S−Y bW� �T
S−Y bW� �

= K−Hð Þ ð4Þ

where

Y† is the pseudo-inverse of Y.
S ¼ SH½
; SHþ1;…; SK �T

is the matrix set of all spike signal
potentials.

K is the total number of K moments.
H is the number of H moments ahead of the

time correlation [20], which is equivalent
to an optimal initial value determined
through the preliminary test.

Sk ¼ sTk ; s
T
k−1;…; sTk−Hþ1

� �T
, Y ¼ yk½ ; yk−1;…; y1�T is a

matrix set for estimating the position of finger movement,

yk ¼ yk ; 1½ �T, yk is the estimated position at time k, cW ¼ ak½
; bk �T is the estimated coefficient matrix, ak and bk are the
estimated weights at time k, and Rv is the observed noise
covariance.

Unsupervised training of EM algorithm

The EM algorithm is also based on the SSM principle of Eq.
(2). The observation model can be expressed as the Bernoulli
probability mass function. Therefore, in the iterative process
of the unsupervised EM algorithm, the E-step is defined as
follows [21]:

yk Kj ¼ yk kj þ σ2
k kj σ2

kþ1 kj
� �−1

ykþ1 Kj −ykþ1 kj
� �

ð5Þ

Rk Kj ¼ σ2
k Kj þ y2k Kj ð6Þ

Rk;k‐1 Kj ¼ σk‐1;k Kj þ yk Kj yk‐1 Kj ð7Þ

where yk|j is the mean of state yk with the Gaussian random
variable and is calculated using the filtering algorithm (j = k) at
time k, σ2

k jj is the covariance of state yk with the Gaussian ran-
dom variable and is calculated using the smoothing algorithm (j

=K) at time k,Rk|K andRk, k ‐ 1|K are the joint covariances of states
y2k and yk yk‐1, respectively, as calculated using the smoothing
algorithm, and σk ‐ 1, k|K is the state space covariance of state yk
yk‐1 as calculated using the smoothing algorithm.

Therefore, the expected log likelihood value of the com-
plete data can be determined by calculating the expected value
yk|K and covariance Rk|K, Rk, k ‐ 1|K of the state variable. The
filtering algorithm gives the estimated value of the initial state,
and the smoothing algorithm gives the estimated value of the
ideal observation state.

In the M-step, maximizing the expected value of the log
likelihood of the complete data of Eqs. 5–7, the updated pa-
rameters can be defined as follows [21]:

y
lþ1ð Þ
0 ¼ 1

2
y1 Kj ð8Þ

where y lþ1ð Þ
0 is the initial state value of the l+1th iterative

cycle. To evaluate the expected value of the best complete
data log-likelihood in the E-step, the EM algorithm mainly
uses the filtering algorithm, the fixed interval smoothing algo-
rithm, the state space covariance algorithm in the E-step of
Eqs. 5–7, and the M-steps of Eq. (8) to complete cycle
iteration.

The weights and finger positions trained on Eqs. 2–8 are
inaccurate. In the next section, we describe the use of WSL to
adjust the estimated position, as well as the application of the
adjusted moving position of the finger to obtain more reliable
weight parameters.

Data collection for the moving finger
of a macaque

The specific codec process for the moving finger of the ma-
caque is shown in Fig. 1. Regarding the relevant collection
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Fig. 1 Track coding of the moving finger of the macaque
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equipment, a normal healthy macaque was selected, and the
finger could move freely in an area of length L and width B.

First, the macaque was trained, and bright spots appeared as
targets in the active area. At different times, the objects appeared
in different positions, and the finger of themacaquemoved to the
target. After repeated training, the macaque could independently
complete this task. Secondly, the period of occurrence of the
target was defined asΔt, and the implanted neural electrode array
related to the moving finger could collect information sk at times
kΔt, where k = 0, 1, ...,K-1, etc. Then, it was necessary to record
the position of the moving finger at each moment. For example,
when the finger moved to A at time kΔt, the signal sk and posi-
tion ykwere recorded for that moment. Sequential recording was
used for position yk of B, C, D, E, etc. Finally, K groups of data
were collected in total. The neural decoding technique was re-
quired to obtain byk through sk and to attempt to make the esti-
mated byk consistent with the actual yk.

In this study, it was necessary to decode the finger move-
ment position byk using the neuron spike potential signal in
unsupervised learning. WSL was employed to correct the in-
stability of the unsupervised learning and numerous reverse
problems. After adjustingbyk , we continued to use the adjustedbyk to train weight cW to improve the accuracy of the trained
model, which is more conducive to predicting the position of
the finger movement track.

Decoding method research

WSL

First, after reviewing several studies and experiments on un-
supervised learning, we determined the following rule, i.e., a
few predicted values and real values exert a symmetry effect
on the median value of the finger activity area. This allows the
idea of the conversion to be remembered. In this study, this
idea is still considered as the category of WSL [18].

This sectionmainly discusses the idea ofWSL and how it was
specifically applied. In addition, the abscissa and ordinate are rep-
resented by the position. WSL was utilized in this study, and the
planeareaof thefingermovementwasdividedintofourquadrants.

As can be seen from Figs. 2 and 3, the position z x
0
k ; y

0
k

� �
was

processed in the training data, providing the quadrant location in
thedefinedcoordinatesystemwhere i=1,2,3,or4.Weonlyknow
that the finger has moved to certain areas among the four areas in
the plane, and do not know the actual track value; moreover, the
approximate area is also the essence of the idea of WSL.
Furthermore, an imprecise label of WSL is acquired through a
one-to-one conversion of the real position to obtain the areas of
themotion track.

Because the previous unsupervised training method could

be used to train x
0
k and y

0
k roughly, most of the trained posi-

tions are in the reverse state at the center of the motion region.
The idea of WSL was mainly applied to the training data, and

x
0
k as well as y

0
k have only positive values. Therefore, the

process can be further analyzed and operated as follows:

1) Creating a virtual X′ and Y′ axis: The maximum value

x
0
max,y

0
max and minimum value x

0
min,y

0
min are, respectively,

obtained from the training data x
0
k ; k ¼ 1; 2;…;K and

y
0
k ; k ¼ 1; 2;…;K. The virtual Y′-axis is then represented

as x
0
max þ x

0
min

� �
=2, and the X′-axis is represented as

y
0
max þ y

0
min

� �
=2.

2) The abscissa and ordinate of the training position yk are
based on the virtual Y′-axis and X′-axis, respectively. If the

true abscissa is more than x
0
max þ x

0
min

� �
=2, then it is

expressed as 1, and if it is less than x
0
max þ x

0
min

� �
=2, it is

expressed as 0. Likewise, if the true ordinate is more than

y
0
max þ y

0
min

� �
=2, then it is expressed as 1 and as 0

otherwise.
3) The estimated abscissa and ordinate of the training data in

unsupervised learning are also obtained from the virtual
Y′-axis and X′-axis, respectively. If the estimated abscissa

is more than x
0
max þ x

0
min

� �
=2, then it is expressed as 1,

and if it is less than x
0
max þ x

0
min

� �
=2, then it is 0.

Likewise, if the estimated ordinate is more than

y
0
max þ y

0
min

� �
=2, then it is expressed as 1. Otherwise, it

is expressed as 0.
4) Judgment: The abscissa and ordinate estimated by unsu-

pervised learning have a one-to-one correspondence with
the true abscissa and true ordinate. For example, the esti-
mated and real abscissa are simultaneously 1 or 0 or vice
versa, which is judged as positive. The judgement is sim-
ilar for the estimated and real ordinate.

Finally, if the estimated abscissa and ordinate are deter-
mined to be positive, the corresponding position remains un-
changed. If the judgment is reversed, the abscissa or ordinate
should be overturned on the virtual Y′-axis and the X′-axis,
which can be expressed as follows:

Fig. 2 WSL data processing
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y0k ¼
ymax−yminð Þ yk−ymin

� �
ymax−ymin

þ ymin

eyk ¼ 2 Y−y0k
� �

þ y0k

ð9Þ

where ymax and ymax are the maximum values in the positions
before and after unsupervised training respectively. Similarly,
ymin and ymin are the minimum values. Y is represented as
ymax þ yminð Þ=2. y 0k is the linearly processed position of yk
after unsupervised training, and eyk is the estimated training
position after WSL.

WSL’s training and decoding of finger movement
position via KF algorithm

After establishing the WSL model, the predicted values and
corresponding peak values of the original neurons constitute a
new supervised mode, which require further training to opti-
mize the weight of the model.

Weakly supervised processing of the unsupervised KF algo-
rithm is required, as discussed in the “Unsupervised training of
KF algorithm” section. Subsequently, the weight calculation for
the SSM model can be performed using the LS approach [19]:

fW ¼ eY†
S 0 0 ð10Þ

Rv ¼ S 0 0−eYfW� �T
S 0 0−eYfW� �

= K−Hð Þ ð11Þ

where eY is the position Y after WSL,
S

0 ¼ S
0
H ; S

0
Hþ1;…; S

0
K

� �T
, S

0
k ¼ s

0T
k ; s

0T
k−1;…; s

0T
k−Hþ1

h iT
,

s
0
k is the spike signals of the test data at the time k and is

mutually exclusive with the training data sk, andfW is the estimated matrix after WSL.

In the test, according to the weight fW, it is necessary to
estimate the finger movement position byk from the given neu-
ron spike signals. Using the KF algorithm [12]

Gk ¼ Pk‐1fWT fWPk‐1fWT
þ Rv

� 	‐1

ð12Þ

αk ¼ S
0
k‐ fWbyk‐1 ð13Þ

byk ¼ byk‐1 þGkαk ð14Þ
Pk ¼ Pk‐1‐GkfWPk‐1 þ σ2 ð15Þ
where Pk is the covariance of the estimated byk at time k, Gk is
the Kalman gain vector at time k, and byk is the estimated
position of the test data at time k.

WSL’s training and decoding of finger movement
position via EM Algorithm

Similarly, according to the establishment of the WSL model,
the trained position of the unsupervised EM algorithm is proc-
essed. After processing, the EM algorithm is used to estimate
the weight of the finger movement position, which can be
expressed as

ea ¼ K∑K
k¼1S

0
keyk−∑K

k¼1eyk∑K
k¼1S

0
k

∑K
k¼1 ey2k þ Pk

� 	
−∑K

k¼1eyk
ð16Þ

Fig. 3 WSL decoding diagram
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eb ¼ 1

K
∑K

k¼1S
0
k−a∑

K
k¼1eyk� �

ð17Þ

fW ¼ ea; ebh iT
ð18Þ

whereea and eb are the matrices estimated after WSL.
In addition, the iterative update calculation for the observed

noise covariance Rv takes the form of Eq. 4 or 11.

In the test, according to the weightfW, the finger movement
positionbyk was estimated from the given neuron spike signals.
The experimental principle of the filtering algorithm is de-
scribed in Eqs. 5–8, wherein the maximum expected value is
found using the E-step and M-step loop iterations.

Finally, we used the KF and EM algorithms based on the
WSL principle to estimate the position byk by comparing the
neuron spike signals to the actual finger position yk.

Neural decoding method and steps

Data sources

The data were collected from the Hatsopoulos Laboratory [22]
and can be found at https://booksite.elsevier.com/
9780123838360/. The collected dataset is called the
“hatsopoulos dataset.” For a description of the data
collected, please refer to the “Data collection for the moving
finger of a macaque” section, where the parameter value set
was as follows.

1) Active area length L = 25 cm, width B = 18 cm
2) Number of electrodes Ne = 42
3) Sampling period Δt = 70 ms
4) Data length K = 3101

Two groups of experimental data were collected, and the
relevant parameters of each group of data were set as listed
above. The specific characteristics of the data are as follows.

1) Data 1: This dataset consists of a neuron feature matrix of
dimensionsK×Ne and a position tag matrix of dimensions
K×2. The first column in the tag matrix is the X-axis, and
the second column is the Y-axis.

2) Data 2: The format is the same as that of Data 1, but some
of the sample data are outside the active range.

Data 1 and Data 2 were collected under the same condi-
tions. The difference is that Data 2 not only has continuous
finger movement in a random direction but also has horizontal
or vertical movement for a period of time. In the experiments,
the sample points beyond the active area were removed.

Experiment and parameter setting

It should be noted that all the WSL experiment results were
combined with the time correlation parameter H (H > 1) [20],
so that the error would be further reduced relative to the case
without introducing the parameter. The specific H-value is
discussed in the “Decoding results and analysis” section. It
is also noteworthy that some traditional algorithms do not
introduce H or have H = 1.

The lengths of Data 1 and Data 2 were bothK = 3101. Data
1 and Data 2 were divided into five groups of experiments to
judge the neural decoding performance of WSL. The specific
experiments were as follows.

1) Experiment A: Holdout verification was applied to both
Data 1 and Data 2 [23]. In each case, 70% of the
hatsopoulos dataset was used for training, and 30% was
used for testing, which can intuitively represent the
decoding trajectory.

2) Experiment B: Data 1 was tested using M-fold cross-
validation [23], taking M = 10.

3) Experiment C: Data 2 was tested using M-fold cross-
validation [23], taking M = 10.

4) Experiment D: Data 1 was used as the training sample to
obtain the training model, and Data 2 was input into the
model for testing.

5) Experiment E: Data 2 was used as the training sample to
obtain the training model, and Data 1 was input into the
model for testing.

The error between the decoded and actual positions in
Experiments B and C is the root mean square error ec, which
can be calculated as follows:

ec ¼ 1

M
∑M

m¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

K
0 ∑K

0−1
k¼0 bym;k−ym;k� �2

r
ð19Þ

where the position decoded during theM-th cross-validation isbym;k , the actual position is ym, k, and the data length of the

cross-validation is K′.
The error between the decoded and actual positions in

Experiments D and E is the root mean square error er, which
can be calculated as follows:

er ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

K
∑K−1

k¼0 byk−yk� �2
r

ð20Þ

where the decoded position isbyk and the actual position is yk in
the test data.

Next, the error in the two-dimensional plane is the root
mean square error exy, which can be represented as follows:

exy ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

K
∑K−1

k¼0 bxk0 0−xk0 0� �2
þ byk0 0−yk0 0� �2

r
ð21Þ
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where the abscissa and ordinate decoded in the test data are bx0

and by0
k , respectively, and the true abscissa and ordinate are x

0
k

and y
0
k , respectively.

The above five groups of experiments involved calculating
ec and er using linear [10] and KF [10] algorithms with super-
vised learning, UCKDwith unsupervised learning, and the KF
and EM algorithms with WSL. The relevant parameters were
set as follows.

1) Linear: The weight between the finger movement posi-
tion and spike signals was trained using the LS approach
and then decoded with the test data.

2) KF: The LS method was used to train the weight between
the spike signals and finger movement position. The ini-
tial value y0 = 0, covariance Py, 0|0 = 10, state noise var-
iance Qw= 0.8, and observed noise variance Rv= s−bsð Þ T

s−bsð Þ = K−1ð Þ, wheres ¼ s0½ ; s1;…; sK−1�T andbs =Y†cW.
3) XGBoost: The initial max_depth = 5, learning_rate = 0.1,

n_estimators = 100, objective = 'reg:linear', n_jobs = −1,
eval_metric = 'logloss', and verbose = 100.

4) LightGBM: The initial num_leaves = 31, learning_rate =
0.05, n_estimators = 100, eval_metric = 'logloss', and
verbose = 100.

5) UCKD: The initial decoded position y0 = 10, covariance
Py, 0|0 = 10, and state noise variance Qw = 0.8. The ob-
served noise variance Rv = diag(ones(1, 42)) represents
generation behavior 1, and the diagonal matrix is listed

as 42. The initial weight fW0 ¼ ones 1; 84ð Þ represents
generation behavior 1, and the all-one matrix is listed as
84. The covariance Pw, 0|0 = diag(ones(1, 84))represents
generated behavior 1, the diagonal matrix is listed as 84,
the weighted noise Rw=ones(1, 84) represents generation
behavior 1, and the all-ones matrix is listed as 84. The
forgetting factor λ= 0.005.

6) U-EM: This is the EM algorithm in unsupervised
learning. The initial decoded position y0= 10,
covariancePy, 0|0 = 10, and system noise variance Rw= 2.
The observed noise variance Rv=diag(ones(1, 42)) repre-
sents generation behavior 1, and the diagonal matrix is

listed as 42. fW0 ¼ ones 2; 42ð Þ represents generation be-
havior 2, and the all-ones matrix is listed as 42.

7) WSL-KF: This is the KF algorithm in WSL. The ini-
tial decoded position y0= 10, covariance Py, 0|0 = 10,
and system noise variance Rw = 0.8. The observed
noise variance Rv = diag(ones(1, 42H)) represents
generation behavior 1, and the diagonal matrix is

listed as 42H. The initial weight fW0 ¼ ones 2; 42Hð Þ
represents generation behavior 2, and the all-ones ma-
trix is listed as 42H.

8) WSL-EM: This is the EM algorithm in WSL. The initial
decoded position y0= 10, covariance Py, 0|0 = 10, and

system noise variance Rw= 2. The observed noise
varianceRv = diag(ones(1, 42H)) represents generation

behavior 1, and the diagonal matrix is listed as 42H. fW0

¼ ones 2; 42Hð Þ represents generation behavior 2, the all-
ones matrix is listed as 42H.

Decoding steps of the WSL-KF and WSL-EM

In the previous section, the decoding approaches based on the
WSL-KF and WSL-EM algorithms were given. The complet-
ed decoding steps for the position of the moving finger of the
macaque are summarized in Fig. 4.

Decoding results and analysis

Figure 5(a, b) and 5(c, d) shows the positions of the X- and Y-
axes for the 150 sample points in Experiment A for Data 1 and
2, respectively. As seen from the figure, Linear, KF, UCKD,
WSL-KF, and WSL-EM were selected from the eight algo-
rithms for visual comparison. Except for the unsupervised
UCKD, most of these algorithms are capable of tracking the
moving trajectory. The linear and KF approach with super-
vised learning, WSL-KF algorithm, and WSL-EM technique
can follow the true curve trajectory, but the algorithms per-
form differently owing to the difference between supervised
learning and WSL. First, the linear algorithm will have more
jitter and glitches in the decoding of Data 1 and Data 2, espe-
cially on the Y-axis for Data 2. The performance is more ev-
ident between 100 and 150, where it becomes possible to see
the moving position as

an independent state. The supervised KF has a higher
decoding accuracy than the linear method, and its tracking
effect is significantly better than that of the linear method.
Second, as can be seen, most of the moving positions decoded
using unsupervised UCKD cannot be employed to track the
actual trajectory, and most of the decoded positions are re-
versed. Furthermore, the WSL-KF is a relatively supervised
KF, which may have a slight negative impact on the decoding
performance, but the partial points decoded are still superior to
the supervised KF approach. For example, where the X-value
in Data 1 is roughly in the range of 30–70 and the Y-value is
approximately 50–100, the decoding curve is almost closer to
the true position trajectory than that obtained using the super-
vised KF. Finally, the WSL-EM sometimes tracks the true
position almost completely, which is an improvement com-
pared with the other algorithms. Examples of this situation
include the X-axis range of roughly 30–60 and Y-axis range
of 70–80 in Data 1, as well

as the X-axis range of 100–120 in Data 2, as can be seen in
Fig. 5(a, b) and (c, d). These results indicate that WSL

Cogn Comput



sometimes yields better tracking performance than traditional
supervised learning.

Table 1 lists the mean squared errors of the X- and Y-values
on the one-dimensional plane for each algorithm from
Experiments B–E. In descending order, the average errors of
the X-values for the four groups of experiments are U-EM,
UCKD, WSL-KF, linear, KF, LightGBM, XGBoost, and
WSL-EM. The average Y-value errors in the descending order

are UCKD, U-EM, WSL-KF, linear, XGBoost, LightGBM,
WSL-EM, and KF. Compared with the XGBoost algorithm,
which has the smallest supervised error in the X-value, the
WSL-EM only differs by approximately 1.6% while
exhibiting the lowest decoding error, which is approximately
37.5% lower than the average error obtained when using un-
supervised UCKD. Additionally, compared with unsuper-
vised U-EM, which has the smallest unsupervised error in

Fig. 4 Neural decoding steps of
the WSL-KF and WSL-EM for
the macaque finger movement
position

Fig. 5 (a, b) Curves for decoding finger position in Experiment A with Data 1 along the X- and Y-axes. (c, d) Curves for decoding finger position in
Experiment A with Data 2 along the X- and Y-axes
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the Y-value, WSL-EM reduces the decoding error in terms of
the Y-values by approximately 45.7%. Furthermore, specific
to each group of experiments, the mean square errors of the
WSL-KF and WSL-EM algorithms are similar to or less than
that of the supervised algorithm and are less than that of the
unsupervised UCKD and U-EM approaches. The decoding
error of the WSL-KF algorithm is less than that of the super-
vised KF method, in terms of the X-values in Experiment C,
because the introduced time-dependent parameter H has a
significant effect on error reduction. The traditional linear,
KF, XGBoost, LightGBM, UCKD, and U-EM algorithms
do not introduce H. The decoding error of the WSL-KF ap-
proach is significantly higher in Experiment D, indicating that
the decoding ability of WSL-KF is weak for the X- and Y-
values in Experiment D. The decoding error of UCKD is con-
siderably lower for the Y-values in Experiment D, indicating
that a majority of the positions decoded by the unsupervised
UCKD are in the positive state. The average decoding error of
the U-EM algorithm is markedly higher for the X-values,
whereas the average error of the WSL-EM is markedly small-
er. This indicates that the U-EM algorithm demonstrates more
reverse prediction of trajectory movement, although it is more
accurate after reverse processing.

Table 2 lists the mean square errors of the XY axis on the
two-dimensional plane for each algorithm, from Experiments
B to E. In a descending order of the average errors for the four
groups of experiments, the algorithms are ranked as follows:
U-EM, UCKD, WSL-KF, linear, LightGBM, XGBoost, KF,
and WSL-EM. The decoding error of WSL-EM is within
0.4% of the best value, which was obtained using the super-
vised KF approach. When compared with the unsupervised
UCKD, the performance of WSL-EM improves by approxi-
mately 41.3%.When compared with the unsupervised U-EM,
the performance of WSL-EM improves by approximately
47.7%. The decoding results are similar to the conclusions
drawn in Table 2. The WSL-EM decoding error is still less
than those of the other algorithms. Note that the generalization
error of the Y-values is generally lower than that of the X-
values. We believe that some of the test data used for the Y-
values have more similarities with the training data set, there-
by resulting in a stronger overall generalization ability for the
Y-values as compared with that for the X-values.

The finger movement position at the current time is corre-
lated with the neuron spike potential signals at previous mo-
ments. Here, the experimental results are presented in terms of
the X- and Y-values of Data 1 and Data 2 from Experiments B
to E. The time correlationH and number of iteration cycles for

Table 1 X-axis (Y-axis)
estimation error, unit: CM Algorithm Experiment

B

Experiment

C

Experiment

D

Experiment

E

average

(B+C+D+E)/
4

Linear 3.813 (2.003) 3.898 (2.460) 4.084 (3.010) 3.954 (2.132) 3.937 (2.401)

KF 3.060 (1.498) 3.877 (1.956) 4.569 (2.974) 3.602 (1.649) 3.777 (2.019)

XGBoost 3.646 (1.913) 3.715 (2.307) 3.837 (2.652) 3.758 (2.084) 3.739 (2.239)

LightGBM 3.663 (1.926) 3.709 (2.288) 3.914 (2.524) 3.773 (2.075) 3.765 (2.203)

UCKD 6.422 (3.022) 5.758 (5.656) 5.776 (2.882) 5.596 (4.977) 5.888 (4.134)

U-EM 6.386 (2.642) 6.688 (4.303) 8.328 (4.650) 7.085 (4.326) 7.122 (3.980)

WSL-KF 3.412 (2.218) 3.561 (2.321) 5.421 (3.477) 3.828 (1.879) 4.056 (2.474)

WSL-EM 3.142 (2.069) 3.663 (2.288) 4.518 (2.621) 3.398 (1.675) 3.680 (2.163)

Table 2 Estimation error of the
two-dimensional plane, unit: CM Algorithm Experiment B Experiment C Experiment D Experiment E average

(B+C+D+E)/4

Linear 4.307 4.609 5.073 4.492 4.620

KF 3.407 4.343 5.452 3.962 4.291

XGBoost 4.117 4.373 4.664 4.297 4.363

LightGBM 4.139 4.358 4.657 4.306 4.365

UCKD 7.098 8.071 6.455 7.489 7.278

U-EM 6.911 7.953 9.538 8.301 8.176

WSL-KF 4.070 4.251 6.440 4.264 4.756

WSL-EM 3.762 4.319 5.223 3.788 4.273
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convergence were tested to study the effects of the positions
decoded using WSL-KF and WSL-EM, respectively.

Fig. 6 shows the effect of the H-value on the decoding
performance in theWSLmodel. The mean square error curves
of the X- and Y-values decoded using WSL-KF andWSL-EM
in Experiments B and C, respectively, are presented. The error
curve of the X-values obtained by applying the WSL-KF to
Data 1 shows a downward trend before about H = 3, decreas-
ing to about 3.5 cm, which is followed by a rapid upward
trend. In addition to this particular case, the error curves of
WSL-KF and WSL-EM show downward trends before about
H = 10, and the error curve is minimized at H = 10. The error
curve then gradually increases. Meanwhile, the error curves of
the Y-values obtained by applying WSL-KF and WSL-EM to
Data 1 are increasing. For Data 2, the trend is decreasing
before H = 3, until about 2.3 cm, followed by an increase.
H-value that is too small will lead to under-fitting, and one
that is too large will lead to over-fitting, resulting in poor
generalization ability. Of course, we think the reason that the
Y-value error increased for Data 1 is that the Y-value decoding
error could reach levels as low as 1.7 cm. It is obvious that
continuing to increase the H-value does not have much im-
pact. However, the increased error range atH = 3 is negligible
within 0.3 cm, so the time correlation can still be taken asH =
3 for the Y-values of Data 1.

In addition, we used Data 1 and Data 2 to test the effects of
the time-dependent H of the WSL-KF and WSL-EM algo-
rithms in Experiments D and E, as shown in Fig. 7. Except
for the decoding error ofWSL-EM being too large atH = 3 on
the Y-axis for Data 1 and data 2, the decoding errors of the

other algorithms have little effect, despite some differences,
and satisfy the H-value requirements mentioned above for the
X- and Y-axis tests. Here, the most significant experimental
results obtained from tests are given, using the Y-values of
Data 1 for training and those of Data 2 for testing in
Experiment D. The time correlation H-value of the WSL-
EM algorithm was taken as 8. The above analysis shows that
except for two special cases, the time correlations of X- and Y-
axis decoding are H = 3 and H = 8, respectively. The time
correlations of the X- and Y-values are H = 10 and H = 3,
which can more effectively ensure that the WSL algorithm
has a small decoding error for the finger movement position.

Figure 8 shows the effect of the number of iteration cycles
T on the decoding performance in the WSL model. The mean
square error curves of the X- and Y-axes decoded using WSL-
KF and WSL-EM from Experiments B and C, respectively,
are presented. It can be seen from Fig. 8 that although the error
curve of the X-values of Data 1 first rises and then becomes
stable, the mean square error curve of the finger movement
position tends to become stable after T = 3 in the WSK-KF
results. In theWSL-EM results, the error curve of the X-values
for Data 1 first rises, then decreases, and subsequently in-
creases until about T = 60, after which it essentially becomes
stable. The error curves for the other cases are stable after T =
8. We think that the error increases with the number of the
iteration cycles in the experimental results because M-fold
cross-validation was used. Decoding error also occurs in un-
supervised learning under these parameter settings, and the
errors are too large in the M cross-validation results, leading
to instability in the mean error. This characteristic indicates

Fig. 6 Estimation error on the X-
(left) and Y-axes (right) vs. tem-
poral correlation parameter H in
Experiments (a, b) B and (c, d) C
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that most of the positions decoded are in a reversed state. The
instability is only further reduced owing to the introduction of
WSL, which cannot fully guarantee a reduction in the
decoding error but does guarantee convergence.

In addition, we tested the effects of the number of iteration
cycles T of the WSL-KF and WSL-EM algorithms from
Experiments D and E. As shown in Fig. 9, although in the test
results show some differences, the effect is not large.
Therefore, it is essential to conform to the T-values

corresponding to the X- and Y-axes in the above-mentioned
tests. From the comprehensive analysis, it was concluded that
the error curve was stable after T = 3 in the WSL-KF, so the
number of iteration cycles for convergence could be

taken as T = 3 at the lowest. In terms of WSL-EM, consid-
ering the decoding performance and time cost paid from
Experiments B and E, the number of iteration cycles for con-
vergence could be taken as T = 8 at the lowest, which is the
smallest decoding error.

Fig. 8 Estimation error on X-
(left) and Y-axes (right) vs. num-
ber of iterations cycles T from
Experiments (a, b) B and (c, d) C

Fig. 7 Estimation error on the X-
(left) and Y-axes (right) vs. tem-
poral correlation parameter H in
Experiments (a, b) D and (c, d) E
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Discussion

In this study, we used WSL to correct the position of the
moving finger of a macaque that originally had too large of
a decoding error or an inversed error when unsupervised
learning was utilized, and the model parameters were further
trained for increased accuracy. The WSL-KF and WSL-EM
algorithms were used to decode the accurate finger movement
position in the test data. The problems encountered in this
research, as well as subsequent research directions, are
discussed below.

According to the results in Figs. 6 and 7, we believe that the
H-value affects the decoding performance, which may be re-
lated to the similarity of the data characteristics. More signif-
icant data similarity increased the decoding accuracy and gen-
eralization ability and decreased the H-value. Likewise,
the reduced similarity between the data decreased the
decoding accuracy and generalization ability and increased
the H-value. In addition, the H-value may be related to the
characteristics of the algorithm itself. That is, H may not be a
fixed value, but rather may vary with the degree of similarity
between the data or the algorithm itself.

The results according to the numbers of iteration cycles in
Figs. 8 and 9 show that the error curve will be in a convergent
state with the number of iteration loops and will stabilize in a
straight line. However, the error does not necessarily converge
to the minimum, but rather may increase. Therefore, if the
error is in an increased state before reaching convergence,
but the convergence error is within an acceptable range, the
iterative cycle number at the state of convergence can be

selected. In this manner, the number of iteration cycles for
convergence in WSL-KF was found to be T = 3, while that
for convergence in WSL-EM was determined to be T = 8,
which is basically at a convergence state.

The experimental results in Tables 1 and 2 demonstrate that
the employed WSL model introduces the time correlation H-
value, which not only has a good decoding effect on the X-
and Y-axes but also causes some decoding errors to be less
than or close to the supervised errors. Regarding the decoding
error of the two-dimensional plane, the error of the WSL-EM
algorithm is less than those of the other approaches, being
close to that of supervised learning and smaller than that of
unsupervised UCKD.

In this study, theWSLmodel adopted was divided into two
parts, including left and right regions along the X-axis and
upper and lower regions along the Y-axis, which is equivalent
to dividing the XY coordinate plane into four quadrants.
According to the four quadrants, the finger movement position
decoded by unsupervised learning was judged. The estimated
abscissa and ordinate are determined to be positive, with the
corresponding positions remaining unchanged, while the po-
sition reversed should be changed in Eq. (9). The processed
position was used to accurately train the weight parameter.
However, unsupervised learning conforms to human self-
learning. Completely transforming the WSL into unsuper-
vised learning can be considered; that is, the finger movement
position can be completely decoded without label
information.

To further study unsupervised learning, it is necessary to
determine which features in the neuron spike potential signal

Fig. 9 Estimation error on X-
(left) and Y-axes (right) vs. num-
ber of iterations cycles T from
Experiments (a, b) D and (c, d) E
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can affect the approximate area of finger positions. That is, the
decoding problem of this general region can be directly trans-
formed from regression into classification. At present, deep
neural networks can automatically learn and extract the feature
values of target objects, generally being applied to target clas-
sification. Many classification algorithms in machine learning
require further research, such as the SVM algorithm. If higher
accuracy can be achieved, then unsupervised learning can as
well.

Conclusion

The signals from the brain must be accurately mapped before
they can be applied through a neural interface to intuitively
control a robotic prosthesis. In this application, external activ-
ities can be precisely controlled by the neuron spike signals
using the method described in this paper. We also established
an experimental basis for the subsequent complete implemen-
tation of unsupervised learning. In addition, according to the
research results, the workload of data collection can be re-
duced with knowledge of only a rough area.

In this study, the WSL model was used to decode finger
movement positions through neuron spike signals in the motor
cortex. The essence of the WSL model is to divide the XY
coordinate plane into four quadrants. It is a technical problem
of correcting the position decoded by the unsupervised KF
and EM, then training the weight parameter of the model.
The weight parameter was then used to decode the predicted
location. The paper also introduces the time correlation of the
neuron spike potential signal and the calculation of the time-
dependentH-value inWSL, leading to further reduction of the
decoding error of WSL.

Finally, based on the analysis of the five groups of exper-
imental results, the average decoding error yielded by the
WSL for the X- and Y-values is less than or similar to that
obtained using supervised learning, and less than that obtained
by applying unsupervised UCKD and U-EM. Among the XY
coordinates, the average error of the WSL-EM is the smallest,
only differing by approximately 0.4% from that of the best
supervised KF approach. Compared with the unsupervised
UCKD algorithm, WSL-EM achieved a performance im-
provement of approximately 41.3%. Compared with the un-
supervised U-EM, WSL-EM exhibited an improvement of
approximately 47.7%. These experimental results show that
the neural decoding technology based on unsupervised learn-
ing, coupled with WSL, can overcome the instability and in-
accuracy of unsupervised learning, thereby improving the ac-
curacy of decoding the finger movement position.
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