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    Abstract— In a  passive  ultra-high  frequency  (UHF)  radio  fre-
quency identification (RFID) system, the recovery of collided tag
signals  on  a  physical  layer  can  enhance  identification  efficiency.
However, frequency drift is very common in UHF RFID systems,
and will have an influence on the recovery on the physical layer.
To address the problem of recovery with the frequency drift, this
paper  adopts  a  radial  basis  function  (RBF)  network  to  separate
the collision signals,  and decode the signals  via  FM0 to  recovery
collided  RFID  tags.  Numerical  results  show  that  the  method  in
this  paper  has  better  performance  of  symbol  error  rate  (SER)
and  separation  efficiency  compared  to  conventional  methods
when frequency drift occurs.
    Index Terms—Frequency  drift,  radial  basis  function  (RBF),  radio
frequency identification (RFID), separation efficiency, tag collision.

I.  Introduction

IN  a  passive  ultra-high  frequency  (UHF)  radio  frequency
identification  (RFID)  system,  collision  will  happen  when

tags transmit  their  signals  to a  reader simultaneously [1]–[4].
Most of  traditional  anti-collision methods are on a  media ac-
cess  control  (MAC)  layer  [5],  [6],  but  the  collision  signals
could be  separated  and  recovered  on  a  physical  layer  to  en-
hance  tag  identification  efficiency  [7]–[20].  For  UHF  RFID
system, separation methods may be different  from traditional
ones.  First,  the  tag  signals  symbol  period  is  time-variant  due
to its frequency drift.  In the EPC C1 Gen2 standard [21], the
symbol frequency  drifts  within  the  range  of  nominal  fre-
quency,  ±22%.  The  separation  has  to  be  performed under  an
asynchronous mode.  Second,  the  separation  could  be  con-
sidered as a cluster  problem. For supervised cluster  methods,
good  channel  information  is  required  [16]  but  difficult  to  be
estimated with  the  frequency  drift.  On  the  other  hand,  unsu-
pervised methods will have higher complexity.

The  constellation  mapping  (CM)  algorithm  [17]  can  adopt
an unsupervised cluster method to enhance the accuracy of the
channel  estimation,  but  the  computational  complexity

increases  with  the  number  of  the  collided  tags.  The  single
antenna  zero  forcing  (SAZF)  algorithm  [19]  is  a  supervised
method  and  needs  the  channel  information  to  determine  the
centers  of  clusters.  However,  the  SAZF  can  estimate  the
channel  with  only  two  collided  tags.  Collision  signal
separation  in  the  successive  interference  cancellation  (SIC)
technique  [18]  and  the  least-square  channel  estimate  (LCE)
[20] also requires channel information, which is estimated via
the  period  and  delay  of  a  preamble.  Likewise,  the  frequency
drift  leads  to  a  time-variant  period  and  poor  channel
estimation.  Besides,  some  recent  algorithms  in  [9],  [22]  also
focus their works on physical-layer tag collision separation in
an RFID system. However, [22] does not take into account the
effect  of  the  time-variant  period,  i.e.,  the  frequency  drift  on
the  separation.  Reference  [9]  focuses  more  on  the  use  of
compression sensing to monitor the missing tags in real time,
and still does not discuss the frequency drift more.

Another  concern  this  paper  addresses  is  signal  decoding.
Matched  filter  [19]  and  Viterbi  algorithm  [18]  are  popular
decoding  algorithms  for  an  RFID  system.  They  are  also
proposed  to  decode  collided  RFID  signals.  Due  to  the
frequency  drift,  however,  an  invariant  waveform  of  the
matched  filter  is  difficult  to  guarantee  decoding  under  the
condition  of  maximum  signal  to  noise  ratio  (SNR).  Viterbi
algorithm  is  a  searching  method  with  fewer  searches  for  an
optimal path. The algorithm may also be introduced to decode
RFID collided tag signals. As we know, Viterbi needs to find
the  minimum  distance  between  each  possible  path  and  an
expected  path.  When  frequency  drift  occurs,  the  distance
between  an  optimal  path  and  an  expected  path  may  not  be  a
minimum  value.  This  will  result  in  poor  performance  of
symbol  error  rate  (SER).  Although  [23]  considers  signal
decoding,  it  unfortunately  does  not  discuss  FM0  or  Miller
code and is difficult to apply to an RFID system for EPC C1
Gen2,  where  FM0  and  Miller  has  been  specified  as  a  UHF
RFID  coding  standard  [8],  [14],  [22]–[25].  The  methods  in
[8], [23], [25] consider FM0 decoding directly from collision
signals and can be applied to the frequency shift among tags,
but it assumes that the frequency drift does not occur.

In this paper, an adaptive radial basis function (RBF) neural
network [26] is introduced to separate the collision tag signals
in the UHF RFID system. Owing to a prior known preamble,
the  introduced  RBF  could  complete  a  supervised  cluster  for
the  collision  signals  well  even  though  the  exact  channel
information is  not known. Then, an FM0 decoding technique
in  our  previous  work  in  [27]  is  adopted  to  cancel  separated
errors.  The technique could  detect  edge transitions  to  decode
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the  separated  signals  regardless  of  the  frequency  drift.  From
numerical  results,  our  method  for  the  three  collided  tags
performs  better  than  conventional  methods  when  frequency
drift occurs.

In the rest of this paper, we give the system model and the
proposed separation algorithm in Section II. In Section III, we
describe a decoding method for frequency drift environments.
We  give  simulation  results  to  show  the  performance  of  the
separation in Section IV. Section V is our discussion. The last
final section draws a conclusion.

II.  System Model and Collision Separation With
Frequency Drift

A.  System Model

I

When  a  reader  identifies  UHF  RFID  tags,  it  sends  a
continuous  carrier  signal  with  energy  for  the  RFID  tags  [7],
[22].  Given  transmitting  tags  in  a  slot,  the  reader  will
receive  the  superposition  of  their  signals  and  then  down
convert  the  receiving  signals  to  baseband.  Hence,  the
complex-valued  baseband  signal  at  the  receiving  antenna  is
[18]–[20]

z̄(t) =
i−1∑
i=1

hiei(t)+ ζ(t)+Ξ (1)

hi
ζ(t)

ei(t) =
∑k−1

k=0 πi,kgpi,k(t− kpi,k −qi) pi,k

qi
pi1,k , pi2,k i1 , i2 πi,k ∈ {0,1}

k
gpi,k(t)

where  is  assumed  to  be  a  flat  fading  linear  time  invariant
channel in a cycle of a tag ID identification [18], [19].  is
an  additive  white  Gaussian  noise  added  at  the  reader.

 realizes  an  on-off  key. 
and  represent  the  symbol  period  and  delay  respectively,
where generally ,  when .  denotes
the  transmitted  symbol  [18].  is  the  length  of  symbol  block
[19], [20].  denotes the pulse modulation signal.

f f

In  the  EPC  C1  Gen2  standard,  a  reader  can  only  discover
the carrier leakage when all tags are in their absorb state. We
can utilize this period to estimate the carrier leakage  [18],
[20]. Hence, we make

z(t) = z̄(t)−Ξ.

B.  RBF Separation Algorithm

X(n)

From the analysis in Section 1, the performance of collision
signal  separation  would  degrade  due  to  the  frequency  drift.
Here, we introduce a RBF network against the frequency drift.
The basic idea of a RBF neural network is to map a nonlinear
cluster in a low dimensional space to a linear cluster in a high
dimensional  space. Fig. 1 shows  the  architecture  of  the  RBF
network  for  the  separation,  where  an  input  vector  is
expressed as

x(n) = [x1(n), x2(n)]T = [Im[z(tn)] ,Re[z(tn)]]T (2)
tn = n∆t n ∆t

F(·)
in  which,  where  denotes  a  sampling  index and 
denotes  a  sampling  period.  The  function  in  the  RBF  is
defined as

F [x(n)] =
M∑

m=1

wmφm [x(n)] (3)

wm M = 2Iwhere  denotes a weight,  is the number of centers,

φm

and I denotes the number of collided tags and could be estim-
ated through the method in [8], [17]. If the number of tags is
unknown, excessive chosen centers will lead to higher compu-
tational complexity and too few may not be sufficient to com-
plete a training network. The details of the chosen centers will
be  described  in  Section  II-C.  A  Gauss  function  is  chosen  as
the radial basis function  and shown as

φm [x(n)] = exp
(
−∥x(n)− cm∥2

2σ2

)
(4)

cm
σm

cm e(·)

where  denotes  the  vector  of  the mth clusters  central  co-
ordinate  in  RBF,  and  is  the  width  of  the  Gauss  function
centered on . The activation function  is defined as

e {F [x(n)]} =
{

1, F [x(n)] ≥ 0
0, otherwise.

(5)

cm
wm

All  tags  preamble  signals  in  front  of  IDs  are  the  same and
their value is known to a reader. The preambles period can be
estimated  via  algorithms  in  [18],  [20].  Thus,  the  preamble
information could train the RBF networks center point  and
weight .  The  algorithms  in  [18],  [20]  do  not  consider  the
time-variant  symbol  period  and  the  acquired  preamble  will
have some errors. Hence, a RBF trained from preambles with
errors  may  not  be  very  accurate.  After  separation,  however,
our  method  could  cancel  the  separating  errors  via  FM0
decoding. The details are included in Section III.

n ∈ [1,N] N
cm = ĉm(N)

cm

Next,  we  will  describe  training  the  RBF  network.  If
 and  denotes preamble signal maximum sampling

value,  the  center  point  can  be  obtained  as .  We
calculate  by an adaptive method as{

ĉm(n) = ĉm(n−1)+µ(x(n)− ĉm(n−1)), if m = m′

ĉm(n) = ĉm(n−1), if m , m′
(6)

µ m′where  denotes an update rate and  is

m′ = argmin
1≤m≤M

∥x(n)− cm(n−1)∥2. (7)

cm(0)

σm

An initial value could be obtained via an estimate of a
histogram projection, seen in Section II-D. Different from the
direct channel estimation in SAZF and LCE, (6) would obtain
the centers via the adaptive training.  can be estimated by

σm =

Ñm∑
ñm=1

∥x′m(ñm)− cm∥2

Ñm
(8)

Ñm
x′m(ñm) ñm

where  denotes the number of sampling signals which be-
long  to  the mth  cluster,  and  denotes  the th
sampling  signal  in  the mth  cluster.  Finally,  a  recursive  least
squares algorithm for weight training is given by
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Fig. 1.     An architecture of RBF network for separation.
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ŵ(n) = ŵ(n−1)+R(n)Φ(n)α(n) (9)
wm(0) = 0,m = 1,2, . . . ,Mwhere an initial value 

ŵ(n) = [ŵ1(n), ŵ2(n), . . . , ŵM(n)]T (10)

R(n) = R(n−1)− R(n−1)Φ(n)ΦT (n)R(n−1)
1+ΦT (n)R(n−1)Φ(n)

(11)

Φ(n) =
[
φ1,φ2, . . . ,φM

]T . (12)
α(n)The priority estimation error  is

α(n) = d(n)− ŵT (n−1)Φ(n) (13)
d(n) ∈ {0,1}

hi

where  is the  expected  output  value  of  the  net-
work. The center points and weights in the RBF network can
be obtained after training. Substituting the real and imaginary
part  of  the  collided  signal  as  input  data  into  (2)–(5),  we  can
separate the collided signals. Note that the RBF network needs
to be trained for every collided tag. An example for the separ-
ation of the three collided tags via the RBF is shown in Fig. 2,
where  the  left  part  gives  the  separated  signal  waves  and  the
right  part  gives  classified  lines  in  the  I/Q  planes.  Signals  on
one side of the line are classified as 1 and on the other side are
0. The RBF network is a clustering method, where the power
gains of channels  decides the position of the cluster centers.
Similar to [6]–[9], RBF network also requires the power gains
be different and more details would be discussed in Section II-E.

Moreover,  RBF  is  a  supervised  method,  where  the  centers
are trained via the preamble and the adaptive algorithm in (6).
In  fact,  the  symbol  value  of  the  preamble  is  already  known
since  the  EPC  C1  Gen2  has  specified  it.  What  cannot  be
known is the symbol period in the preamble. How to acquire
the period has been proposed in [18]. And, a previous work in
[20]  also  introduced  it.  Of  course,  [18]  and  [20]  do  not
consider  the  frequency  drift.  Thus,  the  preamble  acquired  by
[18] and [20] will have some errors. However, the principle of
the algorithm in [18] and [20] is to search a maximum value in
the  inner  products  of  the  mother  functions  and  collided
preambles,  and  searching  is  in  a  range  of  22% that  the  EPC
has  specified.  Thus,  the  maximum  value  for  searching  is  in
fact  an  average  value  of  the  symbol  periods  and  will  not  be

beyond  the  range  of  22%.  Via  an  initial  center  value  chosen
by a method in [17] (the details can be seen in the Section II-
D),  then,  our RBF network will  adopt the adaptive algorithm
in  (6)  to  enhance  the  accuracy  of  center  estimation.  After
separation  by  the  RBF,  our  method  can  cancel  the  RBF
separating  errors  via  FM0 decoding.  Even  if  there  is  a  small
amount  of  error  in  the  training  data,  it  will  not  have  a  great
impact  on  the  separated  signals  because  it  can  also  be
corrected  by  our  FM0  decoding,  which  ensures  lower  SER.
Next, we will discuss other points which may have an impact
on the performance of this proposed collision recovery.

C.  The Number of Centers

M = 2I

M = 23

From (3)–(12), where the number of centers and the number
of  tags  will  have the  relationship ,  our  algorithm must
estimate  the  number  of  tags  if  we  want  to  know  how  many
centers  should  be  used.  The  cluster-based  methods  in  [8],
[17]–[20]  could  be  used  to  estimate  the  number  of  tags.  For
example,  3  gives  the  IQ  plan  of  three  collision  tag  signals.
From the figure,  the number of  center  points  is  8,  which can
be  obtained  from .  That  is,  the  number  of  tags  can
determine  the  number  of  center  points.  The  details  of  the
RFID system setting in Fig. 3 can be see in Section IV-A.

Another  method  in  [8]  may  also  estimate  the  number  of
tags,  which  is  to  judge  how  many  transition  edges  in  a  V
signal [21] of a preamble. The V indicates an FM0 violation,
which means that a phase inversion should have occurred but
did not. An example is illustrated in Fig. 4, where the V signal
signed  in  an  oval  has  three  edges  and  the  number  of  tags  is
three.

Even if  we do not  know the number of  tags,  and hence do
not know the actually number of centers, there will be only the
following two cases.

1)  When  the  number  of  chosen  centers  is  more  than  the
actual  number  of  clusters,  the  network  training  can  be
completed. As shown in Fig. 5, the number of clusters is eight
and  the  number  of  chosen  centers  marked  by  circles  is
fourteen.  From  the  figure,  a  curve  can  effectively  classify
signals  0  and 1.  That  is,  the  signals  on one side of  the  curve
are  0  and  on  the  other  side  are  1.  The  results  are  consistent
with  [27].  However,  the  complexity  of  network  training  will
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Fig. 2.     RBF networks separate three collided tags.
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Fig. 3.     Clusters for three collided tags in an I/Q plane.
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increase due to excessive centers.
2)  When  the  number  of  chosen  centers  is  less  than  the

number  of  clusters,  the  trained  network  sometimes  cannot
separate  collided tags.  An example  is  shown in Fig. 6,  where
the  number  of  clusters  is  eight  and  the  number  of  chosen
centers  is  six.  From  the  figure,  a  curve  has  crossed  one  of
clusters.

From the analysis above, if we do not know the number of
tags,  we  have  to  choose  as  many  centers  as  possible  despite
this  leading  to  a  higher  computational  complexity.  However,
for  a  dynamic  frame  length  protocol,  the  average  number  of

tags  in  a  collision  slot  is  about  2.33.  Hence,  we  would
consider  the  case  for  two  or  three  collision  tags  in  the
protocol. It is not necessary to choose excessive centers which
are greater than eight clusters.

D.  Initial Value of Centers
Since  we  adopt  an  adaptive  method  in  (6)  to  obtain  the

value  of  the  centers,  how  we  choose  an  initial  value  will  be
key for the estimation. One of the methods is to select a value
from the result of conventional estimates, like [18]–[20]. Due
to  frequency  drift,  however,  conventional  estimates  do  not
work  well  and  thus  the  initial  values  from  them  may  not  be
good  candidates.  Note  that  the  centers  of  clusters  are  time-
invariant even with the frequency drift, as long as the channel
information  is  time-invariant.  Therefore,  we  could  adopt  an
unsupervised  cluster  method  in  [17],  where  the k-means
algorithm is used to accurately estimate the centers. However,
the unsupervised method has higher computational complexity.

Another simpler method is also proposed in [17]. Here, Fig. 7
gives the steps of the methods. First, let an I/Q plane be paved
with  grids.  Then,  the  number  of  points  falling  into  each  grid
are  counted  and  plotted  on  a  histogram.  Finally,  project  the
histogram to  the x axis  or y axis,  and find each cluster  peak.
When we find the grid where the peak is located, we will take
the  center  of  the  grid  as  the  initial  value.  Via  the  adaptive
iteration  in  (6),  our  RBF  network  could  find  more  accurate
centers.

E.  Power Gains of Channels
Our algorithm is also related to the power gains of channels.

Different  kinds  of  channels  may  produce  different
performances.  Our  channel  at  least  guarantees  the  two
following conditions.

1) The power gains of channels should be time-invariant or
slowly  variant.  Similar  to  [17],  [19],  [20],  our  algorithm  is
actually  a  cluster-based  method.  If  the  power  gains  change,
the centers of the clusters will also change. This will have an
influence on the performance of clustering and classification.
Consider an UHF RFID system with link frequency 500 kHz
and 96 bit-ID tags. The duration of transmitting a 96 bit ID is
only  about  0.192 ms.  UHF  RFID  is  a  type  of  near-field
communication  system.  A one  to  three-meter  field  is  a  usual
communication  distance.  In  this  case,  the  condition  that  the
channels  during  an  identification  cycle  are  flat-fading  and
time-invariant  condition  are  guaranteed.  It  is  this  reason  that
this  paper  assume  that  the  power  gains  of  channels  are
invariant, like [17]–[20].

2)  The  power  gains  and  orientation  of  channels  should  be
different among tags. Consider the following special cases. If
two or three tags channels are all identical, the original 22 and
23 clusters will decrease to 3 or 4 clusters, as shown in Figs. 8
and 9. In this case, it is difficult to separate the collided tags.
Therefore,  less  difference  of  channels  among  tags  will  result
in  worse  performance  of  separation,  and  [6]–[9]  require  that
separation should be performed under different power gains of
channels. In practice, the position and direction of tags may be
different.  Thus,  the  fading  coefficient  and  orientation  of
channels will be different.
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Fig. 4.     Estimation for the number of tags via V signal in a preamble.
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Fig. 5.     More chosen centers than actual centers in classification.
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Fig. 6.     Fewer chosen center than actual centers in classification.
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III.  Signal Decoding With Frequency Drift

Due  to  noises,  inferences,  and  drifts,  signals  separated  by
the  RBF  network  will  have  some  errors.  To  remove  these
separated  errors,  we  introduce  our  FM0  decoding  method
under  the  condition  of  the  frequency  drift.  In  the  EPC  C1
Gen2 standard, FM0 is very popular for RFID tag signals [21],
[25]. Fig. 10 illustrates  an  example  of  FM0  (M =  1)  code,
where  there  must  be  an  edge  (1  to  0  or  0  to  1)  between  two
symbols.  Moreover,  a  symbol  0  means  that  there  is  another
edge  in  the  middle,  while  1  means  no  edges.  From  the

example, FM0 can be decoded where the edges are. Due to the
frequency  drift,  however,  FM0  will  fail  to  be  decoded  only
through the  edges  because the  symbol  period is  time-variant.
Next, we will describe how to decode separated signals under
the condition of frequency drift.

A.  FM0 Decoding With Frequency Drift
From  the  example  in Fig. 10,  the  general  rule  for  FM0

decoding  is:  a  symbol  will  be  decoded  as  0  if  there  is  a
positive  or  negative  edge  during  the  symbol,  and  a  symbol
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will be decoded as 1 if there are no edges during the symbol.
Further,  there  must  be  an  edge  between  two  symbols.
Furthermore,  the  periods  of  symbols  are  time-variant  due  to
frequency drift. Thus, the time when the edges occur will also
be  uncertain  and  will  be  in  a  range.  Of  course,  FM0  is  also
considered  as  a  hidden  Markov  chain  where  a  Viterbi
algorithm  may  be  adopted  [18].  However,  when  the  symbol
frequency  is  time-variant,  computing  the  distance  between
two  paths  is  very  difficult.  Matched  filters  with  maximum-
SNR criterions [19] are also not appropriate. This is because a
time-variant  symbol  frequency  is  difficult  to  match  to  an
appropriate filter.

(2n+1)T/2 T
n

Some existing methods can directly recover the collided tag
via  decoding,  e.g.  the  method  in  [25].  However,  when  the
frequency  drifts,  i.e.  with  a  time-variant  frequency,  these
methods do not work well.  The method in [8] can be applied
to  the  frequency  shift  among  tags,  but  it  assumes  that  the
frequency in a tag will not drift, i.e. a tag whose frequency is
time-invariant.  Thus, an FM0 symbol will  be decoded as 0 if
there  are  edges  during the  symbol,  and decoded as  1  if  there
are  no edges.  For  the example of  an one-order  (M =  1)  FM0
code  shown  in Fig. 11 from  [8],  a  symbol  even  in  collision
will be decoded as 0 as long as there is an edge on half of its
period times that  are  odd numbers,  i.e.,  where 
is  a  symbol  period  and  is  an  integer.  However,  when  the
frequency  drifts,  the  transition  edges  position  may  be  time-
variant. Determining when this transition happens is difficult.
Reference  [8]  judges  whether  there  is  an  edge  through  a
threshold. When the value of the transition is greater than the
threshold,  the  transition  will  be  valid.  If  there  are  noises  or
interferences,  however,  the  value  of  the  transition  may  be
affected.  Thus,  the  use  of  this  threshold  may  lead  to
misjudgment.

In  this  paper,  our  algorithm  is  divided  into  two  stages:
separation  and  decoding.  On  one  hand,  since  the  signals

separated by a RBF cover a single tag and appear either 1 or 0,
it is easy to know when the transition happens as long as a 1
changed  into  0  or  0  changed  into  1.  Also,  because  the
frequency drift is within 22%, the EPC specifies can eliminate
invalid transitions. Thus, it is not necessary to know the exact
period.

On  the  other  hand,  due  to  noise  and  interferences,  the
separated signals by RBF networks will have separated errors,
as shown in Fig. 12. The signals shown by black boxes are the
separation errors and the transition edges are invalid edges. In
this case, recovery of collision cannot be performed well only
through  direct  FM0  decoding,  because  FM0  believes  that  a
symbol  is  decoded  as  0  as  long  as  transition  edges  happen
during the symbol. In our FM0 decoding, a frequency beyond
22% will be considered as an invalid edge. Therefore, edges in
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Fig. 10.     An example for FM0 code.
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the black boxes would be canceled.
In a word, the separated signals by RBF networks have only

two cases: 0 or 1. Thus, where 0 changes into 1 or 1 changes
into  0,  a  transition  edge  occurs.  More  complex  detection
theory methods, such as setting a threshold or seeking a peak
via correlation functions seem to be unnecessary.

B.  Steps of FM0 Decoding

flp

[0.78 flp,1.22 flp]
Tlp

From  the  EPC  C1  Gen2  standard,  the  drift  between  the
actual  frequency  and  a  nominal  one  is  not  beyond  22%.
Hence,  the  actual  frequency  should  drift  within  the  range  of

.  Here, we will  use a nominal symbol period
 as a standard level width. Hence, an actual width between

two symbols will have the following cases.

1/2
[
Tlp/1.22 Tlp/0.78

]First, there will be a true edge in the middle of a symbol that
is  decoded  as  0  if  both  of  two  continuous  level  widths  are
within , shown in Fig. 13(a).

[
Tlp/1.22 Tlp/0.78

]Second,  a  symbol  will  be  decoded  as  1  if  its  level  width
between  two  edges  is  within ,  shown  in
Fig. 13(b).

li
[li < Tlp/(2∗1.22) li > Tlp/0.78

Third, there will be a false edge if a level width  between
the two edges is  or , shown in
Fig. 13(c).

From  the  analysis  above,  we  will  give  the  FM0  decoding
steps  under  the  condition  of  the  frequency  drift,  shown  in
Algorithm 1.

Algorithm 1 Algorithm of decoding

ti i = 1,2, . . . ,N N1)  Record  all  edgesposition , ,  where 
denotes the total numberof edges;

2) Calculate
li = ti+1− tithe level width ;

3) If
li li+1 ∈ 1/2[Tlp/1.22 Tlp/0.78]　 a)  and ,  there  will  be  a

valid  edge  during  a  symbol  and  the  symbol  is  decoded  as  0.

IDi = 0 i = i+1Thus,  and ;
li ∈ [Tlp/1.22 Tlp/0.78]

IDi = 1
　b) , there will be no edges during

a symbol and the symbol is decoded as 1. Thus, ;
li < Tlp/(2∗1.22) or li > Tlp/0.78

ti = ti+1, ti+1 = ti+2, . . .
　 c) ,  there  will  be  an

invalid edge during a symbol. Thus, ;
i = i+1 i < N4) . If , go to step 3).

IV.  Results

A.  System Setting
In  this  section,  we  give  numerical  results  to  verify  the

performance  of  the  tag  collision  recovery.  In  the  numerical
experiments,  we  consider  a  scenario  with  a  single-antenna
reader and some passive tags. The final results are the average
of 3000 independent experiment results.

The  readers  need  to  use  a  cross-layer  approach  to  identify
tags. The Aloha protocol is used on the MAC layer. When the
tags in the MAC layer collide, the proposed method recovers
the collision at the physical layer. Some system parameters in
the experiments are referenced to the EPC C1 Gen2 standard
[21],  and  the  others  are  referenced  to  [9],  [17]–[20].  The
detailed parameters are as follows.

h1 = 0.7e jπ/6 h2 = 0.3e jπ/4 h3 = 0.2e j2π/3

h4 = 0.5e j3π/4
Channel: , , ,

.
flpNominal link frequency:  = 500 kHz [19]–[21].

Sampling frequency for baseband signal: 7500 kHz.

1/pn,k flp

qn

Symbol  frequency  and  delay:  each  tag  symbol  frequency
;  deviates  up to  ±22% from the  nominal  frequency ;

the  symbol  frequency  deviation  among  tags  deviates  up  to
±22%; each tags symbol delay  is less than 24 μs [18], [20].

KBlock length: The tags signal length  is 16 and identical to
that of RN16 specified in EPC C1 Gen2 [21].

Antenna: single receiving antenna.

B.  Separation via RBF
Figs. 14(a)–(c) gives  results  where  RBF  network  separates

three collided tags in an I/Q plane when frequency drift occurs
and SNR = 25 dB.  We can see from Fig. 14 that,  the signals
on one side of the classified curves are classified as 1 and the
other  classified  as  0.  That  is,  the  curves  could  separate  the
cluster into signals 1 and 0.

Furthermore, note that only an approximate linear line could
classify the clusters for the separation of tag1 and tag3 shown
in Fig. 14(a) and (c). On the other hand, the classifying curve
of tag 2 shown in Fig. 14(b), requires to be nonlinear.

C.  Estimation of Centers
When  the  number  of  collided  tags  is  three  and  frequency

drift occurs, the results for center estimation through SIC [18],
SAZF [19],  LCE [20] and RBF is given in Fig. 15. From the
figure,  our  method  has  fewer  estimation  errors  than  other
conventional methods when SNR is greater than about 12 dB.
It owes to an initial center value chosen by the method in [17].
Moreover, our RBF network can adopt the adaptive algorithm
in (6) to further enhance the accuracy of the center estimation.

D.  SER and Separation Efficiency
To  evaluate  the  performance  of  each  algorithm  on

 

Ta Tb Ta Tb

Tc Td

Te
Tf

…

(a) Decode as 0 if both Ta and Tb ∈1/2 [Tlp/1.22, Tlp/0.78]

(b) Decoded as 1 if  Tc or Td ∈ [Tlp/1.22, Tlp/0.78]

(c) An invalid edge if Te < Tlp/(2*1.22) or Tf > Tlp/0.78
 
Fig. 13.     Steps of FM0 decoding.
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separating  tag  signals,  we  consider  the  metric  of  ID  SER,
which is defined as

Re =
mk

ml
×100% (14)

ml mkwhere  denotes the total number of symbols and  denotes
the number of error symbols. Separation efficiency is defined as

Pe =
nb

na
×100% (15)

nb nawhere  is  the  number  of  tags  successfully  separated;  is
the total number of collided tags. For the experiment of separ-
ation efficiency,  the separation of a tag would fail  as long as
there is one ID symbol error for the decoded tag.

When the number of collided tags is three and no frequency
drift  occurs,  the  SER  of  SIC,  SAZF,  LCE  and  RBF  for  the
three tags is given in Fig. 16. From the figure, the SER curve

of the RBF algorithm is below that of the others. The reason is
that  RBF  does  not  need  accurate  channel  information  is
because it decodes the separated signal directly from the FM0
code. Fig. 17 shows  the  separation  efficiency  of  the
algorithms  under  the  condition  of  three  collided  tags  and  no
frequency  drift.  From  the  figure,  the  maximum  separation
efficiency of  SIC and SAZF are  30% and 33%,  respectively.
The  separation  efficiencies  of  RBF  and  LCE  algorithm
increase  with  SNR  when  SNR > 5 dB,  and  the  separation
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Fig. 14.     RBF network separates three collided tags.
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Fig. 15.     Comparison results of center estimation via various algorithms.
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Fig. 16.     Symbol error rate in (14) when the number of tags is three and no
frequency drift occurs.
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Fig. 17.     Separation efficiency in (15) when the number of tags is three and
no frequency drift happens.
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efficiencies nearly reach 98%. However, the RBF curve is still
on the left of the LCE curve which means the performance of
separation for RBF is a little better than that of LCE.

Fig. 18 gives SER of SIC, SAZF, LCE and RBF under the
condition of three collided tags and frequency drift. As shown
in Fig. 18,  only  the  SER curve  of  RBF decreases  with  SNR.
Fig. 19 shows  the  separation  efficiency  of  the  algorithms
under  frequency  drift.  As  shown  in Fig. 19,  only  the
separation efficiency of RBF increases with SNR, and nearly
reaches  98% when  SNR  =  25 dB.  On  the  other  hand,  the
separation efficiency of SIC, SAZF and LCE algorithm is still
0 even under higher SNR. The results of the two figures above
indicate that frequency drift makes the other algorithms fail to
decode the collided tags under higher SNR.

Fig. 20 gives the SER of four algorithms above under SNR =
20  dB,  when  frequency  drift  occurs  and  the  number  of  tags
varies  from  2  to  4.  Similar  to Figs. 19 and 20,  the  curve  of
RBF  is  not  horizontal  regardless  of  the  number  of  tags.  The
results  indicate  that  two  collided  tag  signals  cannot  be
recovered  by  the  other  three  methods  as  long  as  frequency
drift occurs.

We  give  the  comparison  between  our  method  and  the
method  in  [8]  for  SER  performance  under  different  drifts,
shown in Fig. 21 when SNR is 20 dB. From the figure, when

100

100

10−1 10−2

the  frequency  is  time-invariant,  i.e.  the  drift  is  0%,  SERs  of
the  method  in  [8]  and  our  method  are  both  lower  than .
Due to the noises having influence on the threshold judgment,
[8]  s  method  shows  higher  SER.  When  the  drift  varies  from
5% to  22%,  however,  [8]  arrives  at  about .  On  the  other
hand, our methods SER is between  and .

V.  Discussion

From  the  numerical  results,  the  proposed  algorithm  can
separate  collision  tag  signals  with  the  frequency  drift.  Here,
we  will  discuss  some  several  factors  that  have  an  impact  on
the performance of the proposed algorithm. The first factor is
chosen  centers.  The  number  of  clusters  for  collision  signals
mapped  to  an  I/Q  plane  is  the  number  of  tags  of  2  powers.
Generally, the number of centers for an RBF network may be
chosen as the number of clusters. Thus, the number of centers
would  be  known  if  the  number  of  tags  is  known.  When  the
number  of  tags  is  unknown,  however,  selecting  the
appropriate number of tags will be key for the RBF network.
From Figs. 5 and 6, it is seen that too few centers is not used
for correct  separation while too many centers produce higher
computational  complexity  of  network  training.  As  seen  from
the  numerical  results  in Fig. 20,  the  performance  of  the
separation is related to the number of collision tags. SER will
increase  with  the  number  of  collision  tags,  especially,  when
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Fig. 18.     Symbol error rate in (14) when frequency drift happens and the
number of tags is three.
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Fig. 19.     Separation efficiency in (15) when frequency drift happens and the
number of tags is three.
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Fig. 20.     Symbol error rate in (14) under SNR = 20 dB when frequency drift
happens and the number of tags varies from two to four.
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Fig. 21.     Symbol error rate in (14) under SNR = 20 dB when frequency drift
varies from 0 to 22% and the number of tags is three.
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the  number  of  tags  is  4,  SER is  beyond  10–1.  Thus,  it  is  not
necessary  to  separate  all  of  collision  tags  regardless  of  the
number of the collision tags. Separation for only two or three
collision  tags  would  a  wise  choice.  For  a  dynamic  frame
length  protocol,  the  average  number  of  collision  tags  in  a
collision  slot  is  about  2.33  [5].  Therefore,  eight  centers  can
cope with an RBF network for most of the collision tags.

Continuing, the preamble signal will have an impact on the
RBF  network.  When  the  frequency  of  symbols  drift,  it  is
difficult to acquire exact information for the period and delay
of  symbols.  The  estimated  preamble  will  have  errors,  which
will  also  produce  a  trained  RBF  network  with  some  errors.
However,  the  drift  is  a  low-frequency  variation  process,  and
the  preamble  signal  only  takes  up  about  six  symbol  periods.
The  time  information  estimated  by  the  existing  methods  will
not  have  more  errors.  Moreover,  the  errors  will  also  be
eliminated via FM0 decoding.

The  power  gain  and  direction  of  channels  is  another  key
factor. In an extreme case, the exact same channel will not be
able  to  separate  collision  signals  because  the  clusters  of  two
tags will overlap with each other. In a real environment, if the
location,  direction,  and  distance  of  the  tags  are  different,  the
channel  gain  will  be  different,  and  thus  the  collision  signals
could be separated through the RBF network.

We  choose  three  tags  because  the  average  number  of
collision  tags  in  a  slot  is  about  2.33  with  the  Aloha  method
from  [3].  This  indicates  that  the  case  of  more  than  three
collision  tags  in  a  slot  is  a  low-probability  occurrence.
Moreover,  our  algorithm's  separation  curve  makes  it  more
difficult to classify clusters when there are too many collision
tags.  Thus,  if  more  than  three  collision  tags  happen,  we  will
not choose separation on the PHY layer.

It  should  be  noted  that  the  training  time  has  an  important
influence on the tag separation performance of our algorithm,
mainly on the RN16 stage. If the training time during RN16 is
too long, the system will consider the tag as unresponsive and
thus  discard  the  subsequent  identification  of  the  tag.  In  fact,
the  training  time  of  the  proposed  algorithm  is  related  to  the
computing performance of hardware. Using high-performance
computing chips can effectively reduce training time, but this
will  increase  readers  costs.  As  the  performance  of  chips
increase  and  the  price  decreases,  our  algorithm  could  be  an
alternative solution.

VI.  Conclusion

The symbol frequency drift of RFID tag signal is a common
phenomenon  in  a  UHF  system.  This  paper  uses  a  RBF
algorithm  and  FM0  to  recover  the  collided  tag  signals  with
frequency drift. From experimental results, the performance of
the symbol error rates and the separation efficiency for RBF is
better  than  those  of  traditional  algorithms  when  symbol
frequency drift occurs.

Since the separation of collision signals in an I/Q plane is in
fact a clustering problem, this paper proposes an algorithm to
separate  collision  signals  via  a  RBF  neural  network.  In  this
paper,  the  algorithm  only  gives  a  framework  for  theoretical
implementation  of  communication  signal  processing,  and  the
numerical  experiment  is  carried  out  on  a  software  platform,

which  is  not  tested  in  real  environment.  However,  all
parameters are set  from the actual environment,  such as EPC
C1  Gen2,  and  we  plan  to  run  the  algorithm  in  a  real  UHF
RFID system in the future to test its performance.
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