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A peak detection algorithm adopting
magnetic sensor signal for rail spike
location in tamping machine
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Abstract
When a tamping machine is tamping track ballasts under railway, it is necessary to determine the tamping positions in
advance. This study proposes a peak detection algorithm to locate rail spikes with magnetic sensor signals, and then
determine the tamping positions. In this algorithm, we have performed the downsampling, sliding window, threshold clas-
sification, and secondary peak search to complete peak detection. Especially, we discuss how a sliding window length, a
downsampling frequency, a secondary-search-window length, and other parameters affect the performance of the algo-
rithm. In experiments, we use a group of real magnetic sensor signals to evaluate the algorithm. Compared with tradi-
tional methods, the proposed algorithm can reduce the false positives and misses of peak detection to 0, while the
maximum location error will not more than 1 cm.
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Introduction

The aim of tamping track ballasts under railway is to
tamp the gap between sleepers and the ballast bed,
make sleepers and the rail evenly stressed, and let bal-
last bed flat and compact. After tamped, the buffer
capacity of track ballast can be enhanced, the positions
of track are stabilized, and thus the safe operation of
the railway will be ensured. The track tamping opera-
tion is done by a tamping machine, which usually needs
to determine the positions of tamping in advance. If
locating is wrong, the hoe may damage the railway and
sleepers, and even tamping machine itself.1 Therefore,
how to find the positions of tamping is one of the most
important steps in the tamping operation.

The traditional location adopts manual methods. An
operator preliminarily judges the positions of tamping,
stops the machine, and then presses a pedal. The hoe in
the machine will be put down to the positions for tamp-
ing. After tamping completed, the hoe is lifted and then
moved to the next position until the whole railway line

completed. Such manual operation is laborious and
inefficient. Furthermore, the fatigue operation is easy
to cause operation error. In order to reduce the inten-
sity of the manual operation and improve the efficiency,
various automatic location methods have appeared in
recent years. A simple method is an equidistant location
method, which is to fix the working distance of each
step of tamping.2 However, this method is only suitable
for rails with equal sleepers spacing, while the actual
rail spacing is likely a random variable with a normal
distribution. One available method is automatic posi-
tioning by sensors. Since the signals generated by the
sensors through the track fasteners or rail spikes are
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different from those from other components, fasteners
can be easily identified and the positions of tamping are
determined. Sensors for locating include infrared sen-
sors, laser sensors, and contact sensors,3 but they still
have problems. The infrared sensor uses the different
temperatures between rail spikes and other components
to identify the spikes, but the temperature differences
between them are not very large in actual use. Optical
instruments in laser sensors are required to be cleaner
to ensure the effectiveness of measuring, but it is diffi-
cult to guarantee this condition in such a dusty railway.
The contact sensor uses a contact switch to detect fas-
teners. However, the switch itself is a mechanical device
and its effect is related to the installation positions and
shapes of fasteners. When fasteners’ positions and the
switch are not at the same level line or fasteners them-
selves are damaged and missing, identification perfor-
mance will also be affected. In addition, computer
vision technology can also be applied to the identifica-
tion of sleepers and fasteners,4–8 but this technology is
based on the images taken during tamping operation. If
the shooting light is dim or sleeper itself is covered by
ballast, the identification becomes also difficult.

Since the above sensors location methods have several
problems, we consider a multi-sensors location system. In
this system, the magnetic sensor is used to detect rail
spikes. Since the sensor uses the magnetic change of a tar-
get to detect, the interference caused by occlusion, illumi-
nation, temperature, fouling, and poor contact can be
reduced. Thus, this magnetic sensor method has strong
environmental adaptability. To overcome the shortcom-
ings that the magnetic sensor cannot detect rail spikes
near fishplates, besides, image detection is also used for
sleeper identification. Therefore, the positions of tamping
are finally determined from rail spikes or sleeper.

This study mainly focuses on the problems of mag-
netic sensor locating rail spikes in the multi-sensor sys-
tem and studies an effective and easy peak detection
method. In experiments, we use a group of real mag-
netic signals sensing rail spikes to evaluate the pro-
posed method. We compare the proposed method with
traditional ones via the metrics of misses, false positives
(FPs), and computational complexity and give results
for multiple groups of parameters. From the results,
when we use the techniques of downsampling, sliding
window detection, threshold classification, and second-
ary peak searching for peak detection, the number of
misses and FPs can be reduced to 0 and the number of
searches (NSs) is about 104. And, the maximum loca-
tion error will not more than 1 cm.

Related work

In order to accurately find the positions of rail spikes,
the peak detections from magnetic sensor signals will

include several steps such as multi-value optimization
and classification. The location of rail spikes from mag-
netic sensing signals is actually a multi-value optimiza-
tion problem. That is, finding a peak in each segmented
magnetic signal chip and the peak coordinate will point
to the location of a rail spike. In traditional optimiza-
tion algorithms, the most popular ones are evolutionary
algorithms. They start from random solution and find
optimal value through iterations. Because of the evolu-
tionary algorithms’ high precision and fast convergence,
they have received more general attentions.9–11 The par-
ticle swarm optimization algorithm is a representative
evolutionary algorithm, which seeks an optimal value
in a solvable space through the cooperation and infor-
mation sharing among individuals in groups.9,10

Genetic algorithm is also a good evolutionary algo-
rithm, which seeks an optimal solution by imitating the
choices of nature and the mechanism of inheritance.11

Unfortunately, the evolutionary algorithms are a global
optimal algorithm and are less concerned with local
optimal values. For rail spikes’ magnetic signals, we just
need to find each local extreme point. Multi-peak detec-
tion is a type of algorithm that can find multiple local
optimal points,12–16 and automatic multiscale–based
peak detection (AMPD)17,18 and Fibonacci peak detec-
tion (FPD)19 are such a multi-peak detection algo-
rithm.17–22 In applications, however, optimization
performances and computational complexity of the
multi-peak detection algorithms often depend on the
parameters such as search range, search depth, and the
number of sprinkling. Inappropriate parameter settings
often lead to slow convergence of algorithms, failure to
find extreme values.

In addition to rail spikes, there are some peaks in
magnetic sensor signals that correspond to the fishplate
and need to be removed by a classification algorithm.
Existing classification can be broadly classified into
supervised and unsupervised ones from whether they
need to learn, from data with tags. Supervised classifi-
cation requires training from data with tags. It learns
through existing training samples to obtain a classifica-
tion model, and then maps inputs to corresponding
tags,23 for example, neural networks. If the supervised
classifications are applied to magnetic sensor locating
rail spikes, a large number of training samples will be
required, and thus have a high complexity. It will
improve cost for the application to engineering.
Unsupervised classification does not require learning
from samples with tags. K-means24 is a typical unsu-
pervised classification method, which minimizes intra-
class distance and maximizes inter-class distance by
clustering. However, K-means algorithm has some
problems when applied to peak classification, such as
the selection of K value and the number of iterations.
The computational complexity will depend on these
factors. Of course, there is another kind of easy
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classification method that we can consider. It could be
more practical to directly extract features from time or
frequency domains.25

Rail spike location is a typical engineering problem,
just like in the study by Tang et al.26,27 When applying
the above algorithms to this engineering practice, it is
necessary to consider the performances of the algo-
rithms and whether higher computational complexity
will result in excessive system overhead. Thus, the focus
of this study is to determine an effective and easy way
to locate rail spikes. In addition, the setup of para-
meters will also have an important impact on the per-
formances of the algorithms. Therefore, the selection of
parameters is another issue that this study should pay
attention to.

Problem description

Due to the instability, contamination, and breakage of
the tamping condition in ballast track, only one single
sensor is difficult to meet the requirements of automatic
positioning. Therefore, we consider a multi-sensor loca-
tion system with magnetic signal and image recogni-
tion. When fishplates interfere with the magnetic signal
of the spikes, the sleeper is recognized by the image;
when the sleeper is covered by ballasts or the image is
difficult to recognize, the magnetic sensor is used for
location. Under such a system, we focus on the algo-
rithm of magnetic sensor locating spikes.

The location of rail spikes through the magnetic sen-
sors is actually to process the magnetic signal. A mag-
netic sensor is installed on a tamping machine. When
the machine goes, the magnetic sensor collects the cor-
responding magnetic signals. Compared with rail, slee-
pers, and ballasts, rail spikes have different magnetic
properties, so their magnetic signals will also be differ-
ent from the others. The signal waveforms are shown
in Figure 1. It can be seen from the figure that signals
from rail spikes are just local peaks and we can locate
the spikes via the detected peak. Therefore, the prob-
lem of rail spike location can be regarded as a peak
detection for rail spike magnetic signals.

In addition to peak signals from rail spikes, mag-
netic signals in Figure 1 also have some peak signals
from fishplates. Rail spikes’ peak signals are disturbed
by fishplates and are difficult to be detected. Thus, the
detected peaks from fishplates cannot help us locate
them and hence need to be screened out of the signals.
How to screen out the peaks from fishplates is a classi-
fication problem. For the location, in this case, the sys-
tem also needs to recognize sleepers for the tamping
location through image recognition. Since image recog-
nition is not the focus of this study, it will not be dis-
cussed more here.

Finally, magnetic sensor signals used in the
system are sampled per constant millimeters. That is,
the number of sampling points can be transformed to
the corresponding kilometer coordinate. Therefore, the
rail spikes’ kilometer coordinate can be determined
from its detected peak position. From the adjacent rail
spikes’ positions, for example, the center of the two
spikes, the positions of tamping can be finally
determined.

Peak detection algorithm research

Downsampling

The raw signals collected from the magnetic sensor are
sampled per constant millimeters. If the sampling inter-
val between adjacent sampling points is small, the num-
ber of sampling point will be more during a long
measured distance. In order to reduce the NS for peak
detection, we can perform a downsampling step first.
The detected peak in the downsampled signals can be
tracked to the original magnetic signals, and then we
will perform a secondary search to find a more accurate
peak. If a raw magnetic digital signal sequence is
xo

n, n= 0, 1, . . . ,No � 1, where No is the total number of
sampling points, the new sequence downsampled at
equal-interval S times can be denoted as

xd
n , n= 0, 1, . . . ,Nd � 1 ð1Þ

where Nd = ½No=S� and �b c denotes a rounding integer.

Peak detection

The magnetic sensing rail spike signal is actually a
one-dimensional signal that approximates a
sinusoidal pattern, from wave-valley to wave-peak and
from wave-peak to wave-valley. Consider a sliding
window method for the peak detection, as shown in
Figure 2. Given the wth sliding rectangular window
with length L, the sequence within the window is
xw+ 0, xw+ 1, . . . , xw+ L�1, w 2 f0, 1, . . . ,Nd � Lg and
the maximum value in sequence is at the midpoint
xw+ L=2b c. Then, the midpoint is a peak that we find and
expressed as

Figure 1. Location of rail spikes through magnetic sensor
signals.
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xw+ L=2b c 2 A ð2Þ

if and only if

xw+ L=2b c.xw+ i & xw+ L=2b c.vthr ð3Þ

where A represents a set of all peaks for magnetic sen-
sor signals; i 2 f0, 1, . . . L� 1g, and i 6¼ L=2b c; and vthr

is a threshold to remove pseudo peaks with a small
amplitude.

Compared with traditional peak detection algo-
rithms, the sliding window method of equations (2) and
(3) can find a peak through several comparisons and
does not need to iterate or solve an objective function.

Besides, how to set the window length L is necessary
since the parameter will infect the algorithm’s computa-
tional complexity and misses. Small L may miss no
peaks. Theoretically, L=3 can determine that xn is a
peak if xn�1\xn.xn+ 1 is satisfied. However, this will
introduce a pseudo peak point as shown in Figure 3(a).
On the contrary, large L will lead to too many sampling
points in a sliding window and an increase for the com-
parisons in equation (3). This has to raise the algo-
rithm’s computational complexity. In particular, when
L increases too much, lots of peaks appear in one win-
dow and misses will produce, as shown in Figure 3(b).

Repeat detection

Since actual sensor signals are usually disturbed by
noises, there is a phenomenon that a rail spike may cor-
respond to multiple peaks. For example, a rail spike
corresponding to a peak point degenerates into a
straight line in a short time, or becomes multiple peak
points, as shown in Figure 4. In this case, it can be
checked whether it is the same peak by judging the

distance between adjacent peak points. Assuming xn1

and xn2
are adjacent peaks detected at the n1th and n2th

sampling points, if

n1 � n2 ł Lthr ð4Þ

then, it is considered that the two peak points corre-
spond to the same spike, where Lthr represents the
threshold of distance. If equation (4) is satisfied, it indi-
cates that there are multiple peak points corresponding
to one spike. For this purpose, the final peak needs to
be determined. Let xn1

, xn2
, . . . , xnK

be multiple peak

Figure 2. Sliding window peak detection.

Figure 3. Impact of window length on peak detection: (a)
smaller window length introduces pseudo peaks and (b) larger
window length causes peak missed.

Figure 4. Peak repeat detected for rail spikes.
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points corresponding to a rail spike. If the values of
peaks are close, the final peak point position can be
averaged, expressed as

n̂=

PK

k = 1

nk

K
ð5Þ

If the values of peaks are much different, a maxi-
mum principle can be used, expressed as

n̂= argmax
nk2f1, 2, ...,Kg

xnk
ð6Þ

Peak classification

The detected peaks can be divided into two types.
One is for rail spikes and the other is for fishplates, as
shown in Figure 1. The peak signals of fish plate sub-
merge rail spike information and make it difficult to
locate rail spike. Therefore, the types of peaks need to
be screened out. A feasible method is to use classifica-
tion algorithm, but classification algorithm first needs
to extract features from the classification object. A
principal component analysis (PCA) method28 can
automatically extract features and achieve dimensional-
ity reduction of features. We can first segment the
magnetic signals into some chips with peaks, then use
PCA to extract features, and finally cluster with K-
means. However, the K-means is an unsupervised clas-
sification and its computational complexity is generally
high.

Here, we consider using the value of a peak as the
feature for classification. Since the size and weight of
fishplate are usually larger than rail spikes, a stronger
magnetic signal is generated. As shown in Figure 1, the
amplitude of the fish plate signal is much larger than
the rail spike signal. Thus, it is reasonable for the value
of peak to be used as feature values. Let xn be the value
of the peak at the nth sampling point. Then

xn 2 At ð7Þ

where At is a set of rail spike peaks if xn\Vthr and Vthr

is a minimum threshold that distinguishes rail spike
peaks from fishplate peaks.

Second searching

When peaks of rail spikes are detected, the position of
peaks needs to be converted into the kilometer coordi-
nates for final tamping location. This step will consist
of two sub-steps.

First, the detected peaks in the downsampled
points are traced back to original sampled points to
perform secondary searching. Assume that the nth
sampling point xn is a first searched peak of a rail
spike. If

mo = argmax
m2No

xo
m ð8Þ

is satisfied, where No = fns� ((Lo=2)� 1), . . . ns� 1,
. . . ns+((Lo=2)� 1)g and Lo is a search window size,
then xo

mo
will be a final peak of secondary search, as

shown in Figure 5.
Table 1 shows the searches number of downsam-

pling secondary Nd 3 L+MpLo and the searches num-
ber of non-downsampling No 3 L0 when window sliding
distance is 1, where Mp = jAtj is the cardinality of peak
points set. When sampling time S is larger, it is known
from equation (1) that Nd � No. Also, if the actual
length covered by the window of downsampling and by
the non-downsampling window is equal, there is also
L� L0. Therefore, ignoring the smaller term MpLo, the
search number of downsampling will be much smaller
than that for non-downsampling.

Second, the kilometer coordinates of peak points
need to be determined. The magnetic sensor signals are
sampled at constant millimeters, where peak points can
give the coordinates of rail spikes desired. If magnetic
sensor signals are sampled at a distance d, the kilometer
coordinates of rail spikes will be marked as D=mod.

Finally, the steps for rail spike peak detection are
given, as shown in Table 2.

Figure 5. Secondary search peek in raw magnetic signal.

Table 1. The search number of downsampling and non-
downsampling.

Number of searches

Downsampling Nd3L+MpLo

Non-downsampling No3L0

Gao et al. 5



Experiment

Experiment setup

The sensor that collects magnetic signals in this experi-
ment is developed from Turck sensor. The specific
parameters of the sensor can be found in the previous
literature.29 The signal acquisition process is shown in
Figure 6. A wheeled car is placed on an actual railroad
with a complete rail, sleepers, ballast, and track bed.
The magnetic sensor is fixed under the car near the rail
to enable it to sense magnetic signals from rail spikes
or fishplates. Then, the car is driven forward at a con-
stant speed, and at the same time, the corresponding
magnetic sensor signals are collected. The data col-
lected by the sensor are two-dimensional data, one
dimension is the signal amplitude and the other is the
corresponding position, that is, the kilometer coordi-
nate. We test our system in a rail of about 98m, so we
collect a total 98 3 103 magnetic data points. The col-
lected magnetic sensor signals are first normalized to
an interval [0 1], and then peak detection algorithms
are performed.

In this experiment, we compared the detection
results of downsampling slide-window peak detection
algorithm (DSPD), non-downsampling slide-window
peak detection algorithm (NSPD), AMPD algorithm,
and FPD algorithm, where DSPD and NSPD are given
in Table 2, and the difference between them is whether
the downsampling in equation (1) and the second
search in equation (8) are used. In addition, we also
compared the threshold classification in equation (7)
with PCA + K-means classification. Table 3 gives K-
means parameter settings, and Table 4 gives the other
related parameter for the above algorithm.

Finally, experimental results introduce true positive
(TP), false negative (FN, i.e. misses), FP, and the NSs
to evaluate the performances of each algorithm.
Besides, the result of maximum positioning error Emax

is also given, defined as

Emax= max D1 � De
1,D2 � De

2, . . .
� �

ð9Þ

where Di and De
i denote the detected kilometer coordi-

nate and the expected kilometer coordinate of the ith
rail spike, i= 1, 2, . . . ,mo.

Comparison of peak detection algorithm

Figure 7 shows FP, FN, and TP of four peak detection
algorithms DSPD, NSPD, FPD, and AMPD. The rele-
vant parameters for DSPD and NSPD are shown in
Table 4. As can be seen from the figure, there are misses
in the AMPD and FPD algorithms, while DSPD and
NSPD do not have misses and FPs when selecting the
parameters of Table 4. The reason is that the detection
performance of AMPD and FPD depends on their
parameter selection, and the selection of parameters is
determined by objective function. Due to the random-
ness of rail spike spacing and the non-stationary of the
magnetic signals, it is difficult for AMPD and FPD to
guarantee that all peak points will be found only
through fixed parameters, seen in Figures 8 and 9.

Comparison of peak classification

Figure 10 shows the classification results of threshold
method and K-means for rail spike and fishplate peaks.

Table 2. Peak detection algorithm for rail spike.

Algorithm step

Input: Magnetic sensor signals sampling sequences
xo

n, n= 0, 1, . . . ,No � 1
Output: Peak point position mo and rail spikes kilometer
coordinate D
1. Normalize the signal sequence between (0, 1)
2. Downsampling in equation (1) obtains
xd

n, n= 0, 1, . . . ,Nd � 1
3. Sliding window peak method detects a peak set A from
equations (2) and (3)
4. Remove repeated peaks by equations (4)–(6)
5. Classify out a rail spikes set At from equation (7)
6. Secondary peak search in equation (8) will find the final spike
position mo and its kilometer coordinate D

Figure 6. Magnetic sensor signal acquisition.

Table 3. Parameter settings in PCA K-means.

Parameter Value

Number of principal
components

2

Principal component cumulative
contribution rate

90%

Distance metric Euclidean distance
Initial point selection Randomly select

two center points

PCA: principal component analysis.
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Figure 11 also shows the results of clustering in K-
means classification. Note that K-means is to first per-
form PCA dimension reduction and then to cluster.
Since PCA is a classical classification for data dimen-
sion reduction and data redundancy, we chose it as a
comparison here. As can be seen from Figure 10, since
K-means has FNs, the number of TP does not reach
the expected value. In addition, K-means needs to com-
plete the PCA dimension reduction and then the unsu-
pervised clustering in Figure 11. Thus, the complexity
is higher than threshold method. On the contrary, the
threshold method has no FNs and FPs and has a better
classification result.

Comparison of NSPD and DSPD

Figure 12(a) and (b) shows the comparison results of
NSPD and DSPD. It can be seen from Figure 12 that

Table 4. Parameters in peak detection algorithm.

Parameter Value

DSPD Threshold Vthr : 0:3, vthr : 0:1
Downsampling frequency S 30
Window length L 3
Sliding distance 1
Searching window Lo 30
Distance threshold Lthr 10

NSPD Threshold Vthr : 0:3, vthr : 0:1
Window length L0 58
Distance threshold Lthr 15
Sliding length 1

AMPD Detection method Local maxima scalogram
r within local maxima scalogram Obeying [0 1] uniformly distributed
Threshold Vthr : 0:3, vthr : 0:1

FPD Detection method Random scatter method
Detection range [1 98,134]
Local sprinkling 98
Search depth 3
Threshold setting 2250

DSPD: downsampling slide-window peak detection; NSPD: non-downsampling slide-window peak detection; AMPD: automatic multiscale–based peak

detection; FPD: Fibonacci peak detection.

Figure 7. Comparison of peak detection algorithms.

Figure 8. FPD results.

Figure 9. AMPD results (part of the result).

Gao et al. 7



two algorithms can reduce FNs and FPs to 0 when the
appropriate parameters are selected, for example,
NSPD at L0= 58 and DSPD at Lo = 70, S = 20.
However, it is quite different for the search number of
NSPD and DSPD. The former has reached about 106–
107 while the latter has only 104. This result also shows
that even if both algorithms can guarantee no FPs and
miss detections, NSPD’s searches will be much more
than DSPD. Therefore, the downsampling step can
reduce the search number of peak detection algorithm.

Effects of parameters on algorithm

In this sub-section, we will show the effects of the
search window length L, the second search window
length Lo, and the downsampling frequency S on the
performances of DSPD algorithm. First, Figure 13
shows the test results for DSPD at L=5, 20, and 30
when Lo and S vary. From the figure, a smaller L has
fewer searches and fewer misses. Therefore, choosing a
smaller L can ensure better peak detection performance

and fewer searches. However, it should also be noted
that when L=5 and S=5, FPs occur. This result
shows that when a smaller L is chosen, a larger S should
be guaranteed to avoid FPs.

Figure 14 shows the results for DSPD at S=12, 20,
and 30 when Lo and L vary. As can be seen from the
figure, a larger S has fewer searches, and in order to
ensure that no misses occur, a smaller L is also selected.
Figure 15 also shows the results for DSPD with fixed
Lo and S when L vary. It can also be seen from the fig-
ure that a smaller L can guarantee fewer searches and
fewer misses, and this result is also consistent with
Figures 13 and 14. In addition, Figure 15 also shows
that a larger Lo also increases misses.

In addition, Figure 16 shows the results for DSPD
with fixed Lo and L when S varies. As can be seen from
the figure, on one hand, a larger S will reduce searches.
On the other hand, it will increase misses. In addition,
consistent with Figure 15, a smaller Lo can reduce both
searches and misses.

Finally, it is seen from the results of Figures 13–16
that, on one hand, a smaller window length can reduce
misses and ensure fewer searches. On the other hand, a
too small window length may produce FPs. One avail-
able method is to choose a small length and a larger
downsampling frequency to avoid FPs. Besides, when
FPs and misses of DSPD are both 0, the values of para-
meters L, Lo, and S are not unique. In order to find bet-
ter values of parameters, Table 5 shows the values of
several groups of L, Lo, and S when FPs and FNs are
both 0. It can be seen from the table that the para-
meters in the last column can produce no misses and
FPs, and the NSs is only 104. The results also indicate
that DSPD’s parameters should be chosen with a
smaller L, a larger S, and a moderate Lo.

Maximum location error

In this sub-section, we give results for maximum posi-
tioning error in Table 6. The parameter selection is to

Figure 10. Results of different peak classification methods.

Figure 11. Peak signal waveform and clustering.
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ensure that the number of misses and the FPs is 0 in the
final peak detection. From the results in the table, the
location error of proposed algorithm does not exceed
1 cm. The location errors come from that a rail spike
will correspond to multiple peaks in the magnetic sig-
nals, or a peak will degenerate into a straight line, as
shown in Figure 4. However, the distance between the
test track sleepers in this experiment is usually about
600mm (depending on the number of sleepers laid per

kilometer), so the location error of rail spike to the dis-
tance is only 1/60, which is less than 2%.

Discussions

From the magnetic sensing signals on a railway, this
study studies a peak detection algorithm for locating
rail spikes. Comparing with traditional schemes, we
design an easier detection scheme, and determine an
optimal parameter selection by analyzing and testing
the relevant parameters of the algorithm. Although in
the experiment, we made a detailed comparison of the
algorithm’s scheme and parameters, and gave some
experimental results, but there are some issues that need
further discussion.

The first is the peak detection of fishplates. It can be
seen from the magnetic sensor signals, when a fishplate
is present, the peak signals of rail spike will be sub-
merged and thus difficult to be detected. This study
only discusses how to distinguish the peak signals of
the fishplates and rail spikes, and does not discuss how
to detect in this case. As mentioned above, the system
will be a multi-sensor location system. When the mag-
netic sensing signal cannot locate rail spikes, it will be
compensated by an image detection method. Since the
image detection scheme will involve additional algo-
rithms, this study will not introduce it too much.

The second is the location error. The location error
given in the experiment is the distance between the peak

Figure 12. Comparison of NSPD and DSPD in detection
results: (a) NSPD results under different L0 and (b) DSPD results
(L = 5).

Figure 13. DSPD’s peak detection result when Lo and S vary.

Gao et al. 9



detected by the algorithm and the actual peak on the
magnetic signal, while the true positioning error should
be the distance between the peaks detected by the

algorithm and the actual rail spike positions. However,
the latter depends not only on the performance of the
peak detection algorithm, but also on the performance

Figure 14. DSPD’s peak detection result when Lo and L vary.

Figure 15. DSPD’s peak detection result when L varies.
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of the magnetic sensor itself. When the peaks of the
magnetic sensor signal deviate from the positions of rail
spike, it is difficult to locate them accurately even if the
algorithm is accurate. Therefore, the selection of mag-
netic sensors is also a factor in determining the accu-
racy of rail spike location.

The third is the sliding length. From a search per-
spective, an increase in the sliding length will reduce the

number of sliding windows and therefore reduces the
NSs. But in turn, the increase can lead to more misses.
In the experiment, we only considered the case where
the sliding window length is 1, because the increase in
downsampling frequency is actually equivalent to
increasing the sliding window length. Thus, the other
sliding length is not considered too much.

The last is about the misses. The misses may not be
an important metric to consider, if we can use an image
detection to compensate for the misses for rail spikes.
Then, we can sacrifice the miss metric in exchange for
other performances of the algorithm. From the experi-
mental results, an increase in downsampling frequency
can effectively reduce the NSs, although the large sam-
pling frequency will produce some misses. This case will
get a faster peak detection algorithm.

Figure 16. DSPD’s peak detection result when S varies.

Table 5. Peak detection results under different groups of parameters.

L = 5 L = 20 L = 30 S = 12 S = 20 S = 30

Lo 70 60 60 Lo 85 80 70
S 20 5 7 L 10 3 3
FN 0 0 0 FN 0 0 0
FP 0 0 0 FP 0 0 0
TP 129 129 129 TP 129 129 129
NS 42,590 408,000 436,050 NS 103,700 35,358 27,873

FN: false negative; FP: false positive; TP: true positive; NS: number of search.

Table 6. DSPD’s maximum positioning error.

DSPD S = 12, Lo = 85, L = 10
S = 20, Lo = 80, L = 3
S = 30, Lo = 70, L = 3

Emax 9 3 10–3 m

DSPD: downsampling slide-window peak detection.
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Conclusion

In this study, a peak detection algorithm for rail spikes
location from magnetic sensing signals is proposed. In
this algorithm, we compare the propose algorithm with
various traditional algorithms and analyze the relevant
parameters of the algorithm.

In the experiment, we used a group of magnetic sen-
sing signals obtained on real rails to evaluate the algo-
rithm. The experimental results show that the schemes
of downsampling, sliding window peak detection,
threshold classification, and second peak search have
better detection performance. At the same time, in
order to ensure that the algorithm does not appear FPs
and misses, and reduce the computational complexity,
the algorithm should also consider a smaller window
length, a larger downsampling frequency, and a moder-
ate secondary-search-window length. Finally, when the
above three parameters are selected, 3, 30, and 70,
misses and FPs are both 0, the NS is only 104 orders,
and the maximum location error does not exceed 1 cm.
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