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 

Abstract—Through hemodynamic models, the change of 
neuronal state can be estimated from functional magnetic 
resonance imaging (fMRI) signals. Usually, there are confounds in 
the fMRI signal, which will degrade the performance of the 
estimation for the neuronal state change. For the reason, this 
paper introduces a state space model (SSM) with confounds, from 
a conventional hemodynamic model. In this model, a successive 
state estimation method requires a state value vector, an error 
covariance, an innovation covariance and a cross covariance to be 
re-derived. Thus, a confounds square-root cubature Kalman 
smoothing (CSCKS) algorithm is proposed in this paper. We use a 
Balloon-Windkessel model to generate simulation data and add 
confounds signals to evaluate the performance of the proposed 
algorithm. The experiment results show that when the 
signal-to-interference ratio (SIR) is less than 21 dB, the CSCKS 
proposed in this paper reduced estimation error to 16%, whereas 
the traditional algorithm reduced it to only 73%. 
 

Index Terms—fMRI, confounds, hemodynamic model. 

I. INTRODUCTION 

ECAUSE functional magnetic resonance imaging 
(fMRI) technology has the advantage of non-invasive, 

non-radiative, repeatable and accurate positioning, and has high 
temporal and spatial resolution, it has become an important 
imaging technology applied to brain function and clinical 
research. In brain cognitive activity, neuronal changes are a 
dynamic process that produces a series of hemodynamic 
responses in the region of the neuronal population or source. 
The responses are manifested by changes in cerebral blood flow 
and blood oxygen concentration as neurons change. The fMRI 
technique measures the responses and uses hemodynamics to 
study the neuronal activation of the brain regions [1]-[2], so 
hemodynamic studies are critical for the application of fMRI to 
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studies of brain function. 
The relationship between neuronal state changes in 

functional brain regions and blood flow, blood oxygen 
concentration and other measured values is a complex 
electrophysiological process [3], which can be described by 
state space models. For instance, differential equations could be 
used to establish a hemodynamic model [2], where the neuronal 
activation is associated with a series of parameters, which 
mainly consists of two parts. The first is a coupling process that 
describes how neuronal activity induces blood changes. The 
second is a hemodynamic process that describes the changes of 
cerebral blood flow, cerebral blood volume, and total 
deoxyhemoglobin content. Through the inversion of the state 
space model, we can use brain blood observations to estimate 
changes in the hidden neuronal state and make inferences about 
neuronal coupling (see below). 

The hemodynamic model described by the differential 
equations is not only dynamic but also highly nonlinear [6]-[7]. 
For this nonlinear problem, many researchers have proposed 
various algorithms to estimate the hidden neuron state or 
related parameters of the model [8]-[23], [26], [31], where 
Friston et al. conducted a more in-depth study of the problem. 
First, they used a Volterra series kernel to estimate the 
hemodynamic model parameters [8], and then proposed to use 
Bayesian estimation theory to invert the hemodynamic model 
[10]. Next, they extended the algorithm to coupled neuronal 
sources, where the connection parameters of distinct brain 
regions were estimated [11]. These brain-regions coupling 
models are called dynamic causal models (DCM). In recent 
years, DCM has been widely used in analysis of effective 
connectivity and electrophysiological studies in functional 
brain architectures. In order to consider the effects of 
physiological and stochastic noise [14]-[15], Riera et al. 
considered a stochastic model [16], which uses a local 
linearization filter (LLF) [18] and parameterized radial basis 
functions (RBFs) [16] to estimate hidden neuron states and 
model parameters. In addition, a successive state estimation 
method was shown to solve the nonlinear problem of 
hemodynamic model inversion. Johnston et al. [19] used a 
particle filter algorithm to estimate hidden neural states, and it 
was found its performance was better than LLF. Murray et al. 
[20] proposed a two-direction particle filter algorithm based on 
this method, and others have used the unscented Kalman filter 
(UKF) [22], which both show better performance in state 
estimation under nonlinear conditions. 

However, sometimes we need to know both the hidden 
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neuron states and model parameters. In brain cognitive 
activities, for example, we may care about which functional 
areas are activated and what is the effective connection among 
the activation regions [11]. At this time, most of the above 
methods cannot jointly estimate the hidden states and 
parameters unless a priori information of some model 
parameters is available. The dynamic expectation maximum 
(DEM) algorithm proposed by Friston [23] can effectively 
jointly estimate hidden states, input and parameters, and show 
robustness in the high nonlinear and dynamic systems [23]. The 
DEM algorithm is based on a state space model (SSM). A 
square-root cubature Kalman smoothing (SCKS) algorithm [3] 
proposed in recent years is also based on the SSM, which can 
jointly estimates the hidden states, input and parameters. 
Especially, when the integration step of the algorithm decreases, 
its estimation performance is better than the DEM algorithm. 
However, the fMRI signal usually has confounds, which are 
caused by peripheral factors such as physiological fluctuations, 
measuring instruments and the external environment [27]. Even 
filtering methods can only partially eliminate the confounds 
[28]-[30], [32]. The existing SCKS method does not consider 
the possible confounds and thus its estimation performance will 
be affected. 
For this reason, this paper establishes a new SSM equation with 
confounds, based on the original differential equations of the 
hemodynamic model. Since the new SSM equation considers 
the confounds, the existing SCKS method is no longer 
applicable. Hence, we redefine the vectors of the hidden states 
and the observed states, and then derive the corresponding 
variance matrix and innovation matrix. Next, the hidden states 
and model parameters are estimated via a cubature Kalman 
filter. Experimental results show that the confounds square-root 
cubature Kalman smoothing (CSCKS) algorithm proposed in 
this paper is better than the existing algorithms in estimating the 
hidden states when the signal to interference (i.e., confounds)  
ratio (SIR) is relatively small. 

II. RELATED METHODS OF HEMODYNAMIC SSM FOR FMRI 

In general, an fMRI hemodynamic model can be described 
by differential equations [2]-[3], [6]-[7], [23]. Without loss of 
generality, the differential equations are expressed as 

 , ,ux f x  ,                                  (1-a) 

 , ,y g u x  ,                                  (1-b) 

where 

x  is a hidden state vector, x  is a differential of x , 
u  is an external input, 
  is a biophysical parameter vector for the model, 
y is a observed blood oxygen level dependent (BOLD) 

signal, 

 f
 
and  g 

 
are a state function and a observation 

function of the model, respectively. 
As can be seen from (1), the model expresses the changes of 

neuron state as a series of parameters of brain blood, and the 
change of the neuronal state can be estimated from the 
observation of BOLD signal by the inversion of the equation. 

DEM algorithm is a method for the state estimation of the 

hemodynamic model. It constructs a group of equations using 
generalized coordinates of motion [23]. 

 D x f ,                                  (2-a) 
D y g ,                                  (2-b) 

where 

g  denotes a column vector from the 0th, the 1th, ... order 
differentials for the function  g  , 

y  denotes a column vector from the 0th, 1th, ... order 
differentials for y , 

f  denotes a column vector from the 0th, 1th, ...order full 
differential for the function  f . 

x  denotes a column vector from the 0th, the 1th, ...order 
differential of x , 

D  denotes a differential matrix operator. 
Equation (2) is actually a group of SSM equations, and the 

DEM algorithm uses the principle of the dynamic expectation 
maximization (EM) algorithm to solve the hidden states x  of 
neurons. Compared with the traditional inversion method, the 
advantage of the SSM-based DEM algorithm is that not only 
the hidden states x  but also the corresponding model 
parameters   can be estimated. In some situations that require 
knowing both neuronal states and other model parameters, 
DEM has an advantage over algorithms that can only estimate 
neuronal states. 

SCKS algorithm is also a SSM method based on the model in 
(2), which uses local linearization [3] to construct the equation 
of SSM, and then uses a cubature Kalman filter (CKF) to solve 
the state values. Since x , u

 
and   are parameters w.r.t. time 

t , we could let tx , tu
 
and t  

be the value of x , u  and   at 
time t  , respectively. Further, let t n t   where t  is an 
integration step. Thus,  

     
 1 11

, , ,
n t

n t n t n tn t n tn t
u t dt



      
  x x f x  ,            (3) 

After local linearization of (3) and omitting t , we will give 
the following augmented SSM equation 

  1 1n n n  x H x P ,                           (4-a) 

   n n ny g m x ,                             (4-b) 

where  

nx
 
= [ nx , nu , n ]T, 

 1nH x
 
= [  1, ,n n nuh x  , 1n ]T, 

     1
1 1 1, , exp I , , ,n n n n n n nu t u t
       h x x J J f x  , 

J  denotes the Jacobian determinant of  f
 
w.r.t.

 nx , 

1nP
 = [ 1np , 1ns ]T is a zero-mean Gaussian white noise 

vector whose autocovariance matrix is a diagonal matrix, 

1np , 1ns
 
and nm

 
are zero-mean Gaussian white noise 

vectors corresponding to nx , n  and ny , respectively whose 
autocovariance matrices are also diagonal. 

It can be seen from (4) that like DEM algorithm, the SSM used 
by the SCKS scheme can jointly estimate the hidden states nx

 
and biophysical parameters n . In particular, when the integral 
step t  decreases, the estimation error of SCKS will be 
smaller than DEM algorithm [3]. 

In summary, we have reviewed the distinction between the 
state space models used for estimation of hidden states x  (i.e., 
Equation 1) and augmented models that allow for estimation of 
both hidden states nx

 
and biophysical parameters n  (i.e., 
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Equation 4). This rests upon augmenting hidden states nx
 
with 

a parameter vector n  
– so that both are estimated during 

filtering. Crucially, the noise variance on the estimated 
parameters nx

 
and n  

is assumed to be very small, so that it is 
effectively estimated as a constant over the time series. This 
device (i.e., augmentation of a state space with parameters) 
could, in principle, be applied in the context of any filtering 
scheme. And then, cubature filtering can be applied to this 
augmentation with implementations of estimation.  

III. PROBLEM OF CONFOUNDS IN SSM 

The confounds of fMRI signals are mainly caused by scanner 
instability and some physiological factors, such as the heartbeat 
and respiration of subjects [27]. At present, the repetition time 
(TR) of fMRI using EPI technology is about 2-3 seconds [28], 
while the average person's hearting and breathing frequency are 
about 1 Hz and 0.3 Hz [28], respectively which are close to the 
scanner sampling frequency. Filters such as low pass, high pass 
and notch can only filter out some of the confounds [29]-[32]. 
Therefore, confounds in fMRI signals are a common 
phenomenon. When the fMRI signal is superimposed with the 
confounds, low-frequency drifts occurs, as shown in Fig. 1. In 
this case, the original SSM equation in (4) becomes 

  1 1n n n  x H x P ,                          (5-a) 

  n n n ny g C m  x ,                        (5-b) 

where nC
 
is the signal obtained by superimposing the 

confounds. Since the existing SCKS method does not consider 
the confounds,

 nC
 
can only be regarded as noise and merged 

into nm
 
when solving the state nx

 
in (5). SCKS uses a CKF 

filter to complete the estimation of hidden states and 
biophysical parameters. Only when the noise of the observation 
equation obeys a Gaussian white noise, however, Bayesian 
optimality conditions are satisfied. Unfortunately, the 
combined noise does not necessarily satisfy the condition. 
Therefore, once the fMRI signal contains more confounds, the 
estimation performance of SCKS will inevitably be affected. 

IV. SSM UNDER CONFOUNDS 

In order to reduce the influence of confounds on estimation 
of state, we need to rewrite the original state equation. The 
confounds nC

 
can be approximately expressed as 

trigonometric series expansion [11], i.e. 

 T
n n nC    ,                                    (6) 

where 

n  
= [ cos01/ L n t  , cos12 / L n t  ,... 

 2 / cos 1L tL n  ]T, 1, 2,...n L , 
  denotes a nominal angular frequency, 

n  = na  denotes the coefficient vector of the confounds, i.e. 
the coefficient of the Fourier series, 
a  denotes the amplitude of confounds, 

n
  = [ 0,nb , 1,nb ,...  1 ,L n

b


]T, 
 L  denotes the maximum order of the harmonics of the 
trigonometric function. 

Note that the confounds in (6) are approximately expressed as 
some trigonometric series with a fixed angular frequency. In 
practice, cardiac and respiration signals in confounds are not 
stationary and also not independent of each other. The rate of 
the cardiac signal and respiration interact with each other, and 
even with input stimuli. In simulation, we model confounds as 
trigonometric series with time-variable frequencies, where each 
component are correlated. The details can be seen in Section VI. 
Then, we use the approximate expression of (6) to estimate the 
simulated confounds. 

Substituting (6) into (5) and rewriting the SSM will have the 
following augmented SSM equation 

  1 1n n n 
    x H x P ,                          (7-a) 

  n n ny m  x ,                            (7-b) 

where 

n
x

 
= [ nx , n , n ]T, 

 1n
 H x

 
= [  1, ,n n nuh x  , 1n , 1n ]T, 

1n
P

 
= [ 1np , 1ns , 1nv ]T is also a zero-mean Gaussian white 

noise vector, and its autocovariance matrix is also a diagonal 
matrix. 

    T, ,n n n n n ng u   x x    . 
It can be seen from (7) that the augmented variable n

x
 
now 

includes parameters n  
controlling confounding fluctuations in 

the observed signal, compared with the state vector nx
 
in the 

SSM in (4). Like (4), in other word, (7) uses exactly the same 
augmentation device, we have now absorbed these confounds 
parameters into the augmented state vector n

x – and have 
equipped them with a low variance. In this model, the 
confounds are no longer regarded as noise, but are expanded by 
the Fourier series, and the coefficients n  

of the series are 
directly estimated.  

In the section of model, we will take this augmentation one 
step further and absorb parameters controlling fluctuations such 
as confounds in fMRI time series in (7). This provides a 
complete model of how hemodynamic states are generated 
under unknown parameters controlling both the neuronal 
dynamics and non-neuronal compounds. Note that by 
absorbing the parameters n  

into the augmented state vector 

n
x

 
in (7), we can now use standard filtering schemes under 

local linear assumptions in (3) and thereby access efficient 
estimates about hidden states nx , biophysical parameters n  
and the coefficients n  

of the confounds. The slight price paid 
for this is that the linearization implicit in (7) renders the 
filtering approximate for highly nonlinear systems. 

It is worth noting that the purpose of the hemodynamic 
model studied in this paper is to estimate the hidden states and 



Fig. 1.  Schematic for confounds. 
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biological parameters of the model through the observed 
BOLD signal, so as to clarify the state of the neurons in the 
brain region and the relationship among them. The existing 
SCKS not only estimates the hidden state nx  and parameter n , 
but also estimates the input stimulus nu . The external input is 
an external stimulus that induces changes in the hidden states 
and biological parameters of the model. In some fMRI 
experiments for brain cognitive, these external stimuli can be 
pre-designed and have a corresponding relationship with the 
external input nu . For this reason, nu  can be used as a known 
variable and need not be estimated. Thus, the establish of (7) 
focus more on the hidden state nx  and parameter n , and 
introduce another coefficient n . That is, the model of (7) let 

n  replaces nu .  

V. CSCKS ALGORITHM 

For the SSM equation in (7), due to the confounds, the 
predicted estimation vector of state, predicted error covariance 
matrix, innovation covariance matrix and cross-covariance 
matrix involved in the existing SCKS algorithm need to be 
re-derived. Hence, the CSCKS algorithm is proposed for the 
state estimation in the SSM equation with confounds. The 
algorithm also uses a CKF filter to estimate model parameters, 
which can be divided into three steps, filter initialization, 
forward filtering and backward smoothing. Forward filtering 
can be further divided into a time update step and a 
measurement update step. Below, we will describe them, 
respectively. 

A. Filter Initialization 

Firstly, the initial augmented state vector 
0 0

ˆ ax
 
needs to be 

assigned to  

 
T

0 0 0 0
ˆ ˆ , , ,

m

a
n n n n

   p s v
x x 0 0 0 0 ,                    (8) 

where 

0 0
ˆ x

 
= [ 0 0x̂ ,

0 0
̂ ,

0 0
̂ ], 

0 0x̂ , 
0 0
̂

 
and 

0 0
̂

 
denote the estimated values of the hidden 

states x , biophysical parameters  , and coefficients   of 
confounds at time 0, respectively 

np
0 , ns

0 , nv
0 and 

mn0
 
are all zero vectors and denote the 

values of corresponding dynamic noises p , s , v  and m  of 
x ,  ,   and y  at time 0, 
np , ns , nv  

and mn
 
denote the corresponding dimensions of 

the vectors p , s , v  and m . 
Next, the initial square root 

0 0

aS
 
of the corresponding 

error-covariance matrix is assigned to  

  
T

0 0 0 0 0 0 0 0 0 0
ˆ ˆa a a a achol E        

S x x x x  

 0 0
, , , ,Smdiag p s vS S S S ,                            (9) 

where 

0 0S
 
= diag ( ,0 0xS , ,0 0S , ,0 0S ), 

,0 0xS
 
= ,0 0x

Q , ,0 0S  = ,0 0
Q

 , ,0 0S  = ,0 0
Q

 , 

pS  = 
pQ , sS  = sQ , vS  = vQ , mS  = mQ . 

,0 0x
Q , ,0 0

Q
  

and ,0 0
Q

  
denote the error-covariance 

matrices of x ,   and   at time 0, respectively 

pQ , sQ , vQ  and mQ
 
denote the covariance matrix of the 

dynamic noise p , s , v  and measurement noise m  at time 0, 
respectively 
chol denotes the Cholesky decomposition operation, 
diag denotes a diagonal matrix. 

B. Forward Filtering 

The first step of the forward filtering is time update. 
Calculating numerical integral points will have 

 
, 1 1 1 1 1 1

ˆa a a
ii n n n n n n     

 S x  ,                     (10) 

where 

i  
denotes a vector made up of the elements of the i th 

column of the integral points matrix Ξ , 
2mΞ =  [ I , I ], 

I N N  denotes a unit matrix, 
2m N is the number of numerical integral points, 

mN n n n n n n n      x p s v  , 
nx , n  and n

 denotes the corresponding dimension of x , 
  and   respectively, 
n  = 1, 2,  ... L , 
L  denotes the length of y . 
Substituting (10) into (7-a) and adding dynamic noise will 

have 

  , , , ,

, 1 , 1 1 , 1 1 , 1 1 , 1 1
, ,

i n n i n n i n n i n n i n n        
 x x p s vH        ,        (11) 

where the superscript is used to distinguish the components of 
the numerical integral points. For example 

, 1 1i n n 

x , 
, 1 1i n n 


 

and 
, 1 1i n n 

  denotes the corresponding numerical integral 
points of the components 1 1

ˆ
n n x ，  

1 1
ˆ

n n 


 
and 

1 1
ˆ

n n 


 
in 

  1, ,

, 1 1

n n n

i n n

  

 
 xx     , respectively. Then, calculate the 

predicted estimation 1
ˆ

n n
x

 
of the states and the square root 

1n nS
 
of the predicted error-covariance of the states 

 , ,

1 , 1
1

ˆ
m

n n i n n
i

m
 



 
   

 
 xx   ,                        (12) 

  1 1n n n n
qr

 
   S X ,                          (13) 

where 

, , , , , ,

1 1, 1 1 2, 1 1 , 1 1
ˆ ˆ ˆ, , ,

n n n n n n n n n n m n n n n
m

      
       

x x xX x x x        ,                                        

(14) 
and qr denotes QR decomposition.  

The second step is measurement update. Substituting (10) 
into (7-b) and adding the measurement noise will have 

  , 1 , 1 , 1 , 1 , 1 1
, , m

i n n i n n i n n i n n i n n     
   x      ,          (15) 

Then, the predicted estimation of the measured BOLD signal 
is 

1 , 1
1

ˆ
m

n n i n n
i

y
 



  ,                              (16) 

Hence, we could calculate the innovation covariance , 1yy n n
S

 
and the cross-covariance matrix 

, 1xy n n
P  

  , 1 1yy n n n n
qr

 
   S Y ,                          (17) 

 T

, 1 1 1xy n n n n n n  
P X Y ,                           (18) 

where 

1 1, 1 1 2, 1 1 , 1 1
ˆ ˆ ˆy , y , , y

n n n n n n n n n n m n n n n
m

      
        Y  ,                                                                       
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(19) 

And, the Kalman gain nK
 
could be shown as 

  T

, 1 , 1 , 1n xy n n yy n n yy n n  
K P S S ,                 (20) 

where / denotes the right division operation on the matrix. 
Therefore, the estimation ˆ

n n
x

 
of the states and the square-root 

n nS
 
of the corresponding error-covariance matrix are obtained 

as 

 1
ˆ ˆ

n nn n n n e
  x x K ,                             (21) 

   1 1nn n n n n n
qr

 
   S X K Y ,                    (22) 

where 1
ˆe y yn n n n

  . At this time, the estimation ˆ a

n n
x

 
of the 

augmented state vector and its corresponding error-covariance 
matrix a

n n
S

 
can be given by 

 
m

T

ˆ ˆ , , ,a
n n n nn n n n

 
 p s v

x x 0 0 0 0 ,                      (23) 

  m, , , ,Sa

n n n n
diag p s vS S S S S ,                    (24) 

Finally, this algorithm will converge if  

                   Ll l  ,                                       (25) 

where l  is a threshold and nl  
, n  = 1, 2, ... L  is a likelihood 

function, which is given by 

   T 2 T
1 , 1 , 1 , 1 , 1

log 2 log e 2n n nyy n n yy n n yy n n yy n n
l l L    

    
 

S S S S     , 

n  = 1, 2, ... L                                                                           (26) 

Table 1 gives the details of the forward filtering. 

C. Backward Smoothing 

Forward filtering is used to achieve a preliminary estimation 
of the model parameters, and backward filtering is to smooth 
the results of the forward filtering to improve the estimation 

accuracy. Since the low frequency confounds are considered, 
the backward filtering of the algorithm also needs to rewrite the 
state vector, the filtered error-covariance matrix, the predicted 
error-covariance matrix and the cross-covariance matrix, as 
compared with the backward part of the original SCKS. Of 
course, these rewriting variables in the backward smoothing 
algorithm are combined with the forward filtering algorithm, 
where the backward smoothing has been described in detail in 
[3]. Therefore, this paper only gives the steps of the backward 
smoothing in Table 2. In addition, Tables 1 and 2 also give the 
condition for the end of iteration and loop for CSCKS 
algorithm. 

VI. EXPERIMENT SETUP 

A. Data Generation 

The data of this experiment were generated according to the 
differential equation in (1). The specific hemodynamic model 
used is the Balloon-Windkessel model, its detailed equations, 
model parameters and corresponding parameters settings are 
shown in Table 3-4 and Table6. The external input of the data is 
the arrangement of the Gaussian functions of six different peaks 
in time. The peaks of these Gaussian functions are 1, 0.8, 1, 0.2, 
0.9 and 0.4, respectively and the corresponding time points of 
the peaks are 10, 15, 27, 39, 47 and 55, respectively. In 

TABLE I 
STEPS OF CSCKS ALGORITHM’S FORWARD FILTERING 

Input: 

BOLD signal ny , n  = 1, 2, ... L ; 

External input nu . 

Output: 

Filtered estimation 
|

ˆ
n n
x  

Known condition: 

State function  1n n
 H ; 

Observation function  n  ; 

Filtered error-covariance matrices ,0 0x
Q , ,0 0

Q
 , ,0 0

Q
  

and their 

corresponding noise covariance matrices pQ , sQ  , vQ ; 

Noise covariance matrix mQ
 
of BOLD signal. 

Steps: 

I Filter initialization 

①Initialize 
0 0

ˆ ax
 
and 

0 0

aS  by (8) and (9), n  = 0, 
0l  = 0; 

II Time update step 

② 1
ˆ

n n
x

 
is obtained by (10-12); 

③
1n n

S
 
is obtained by (13-14); 

III Measurement update step 

④ ˆ
n n
x

 
is obtained by (12) and (14-21); 

⑤ n n
S

 
is obtained by (22); 

⑥ ˆ a

n nx
 
and a

n nS
 
are obtained by (23) and (24),  respectively; 

⑦ nl  
is obtained by (16) and (26); 

⑧ n  = n  + 1 ; 

IV Iterative judgment 

⑨If n  L , repeat step II-III in Table 1. Otherwise, perform step I-III 

in Table 2. 

 

TABLE II 
STEPS OF CSCKS ALGORITHM’S FORWARD FILTERING 

Input: 

Filtered estimate ˆ
n n
x , square-root factor n n

S , augmented filtered 

estimate ˆ a

n nx
 
and its augmented square-root factor a

n nS , likelihood 

function nl  
computed in Table 1, n  = 1, 2, ... L . 

Output: 

Smoothed value ˆ s

n n
x . 

Known conditions: 

State function  1n n
 H ; 

Filtered error-covariance matrix ,0 0x
Q , ,0 0

Q
 , ,0 0

Q
  

and its 

corresponding noise covariance matrix pQ , sQ , vQ ; 

Noise covariance matrix mQ
 
of BOLD signal. 

Steps: 

I Initialization: n  = L  

II Backward smoothing filtering step 

, 1 1 1 1 1 1
ˆa a a

ii n n n n n n     
 S x  , 

 , , , ,

, 1 , 1 1 , 1 1 , 1 1 , 1 1
, ,

i n n i n n i n n i n n i n n        
x x p s vH         , 

 , ,

1 , 11
ˆ

ms

n n i n ni
m

 
  xx   , 

, , , , , ,

1 1, 1 1 2, 1 1 , 1 1
ˆ ˆ ˆ, , ,s s s

n n n n n n n n n n m n n n n
m

      
     

x x xX x x x        , 

 1 1

s

n n n n
qr

 
 
 

S X , 
, , , , , , , , , , , ,

1 1 1, 1 1 1 1 2, 1 1 1 1 , 1 1 1 1
ˆ ˆ ˆ, , ,

n n n n n n n n n n m n n n n
m

             
      

x x x x x xX x x x             
T

, 1 1 1 1x x n n n n n n    
P X X , 

 T

, 1 1 1

s s
n x x n n n n n n   
A P S S , 

 , ,

1 1 1 1 1
ˆ ˆ ˆ ˆs s

nn n n n n n n n    
  xx x A x x  , 

 1 1 1 1 1
,s s

n nn n n n n n n n
qr

    
  
 

S X A X A S , 

n  = n - 1 

III Iterative judgment 

If n   0, repeat steps II-III in this table. Otherwise, perform step IV in 

this table. 

IV Loop judgment 

If (25) satisfies or the number of cycles exceeds a threshold, the 

algorithm ends. Otherwise, the current cycle estimate 
11

ˆ ax
 
is taken as the 

initial value 
0 0

ˆ ax , and steps II-IV of Table 1 and Step II-III of Table 2 are 

repeated. 
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particular, considering the influence of the integration step t  
of the data on the algorithm, cosine transform interpolation on 
data is required and the final t  will be the interval between 
adjacent time points after interpolation. The time length of an 
original BOLD signal data is 60. The length L  of interpolated 
data and the corresponding interpolation number I  and the 
integration step t  are shown in Table 5. The data is 
specifically obtained from a Matlab file, 
spm_DEM_generate.m in the ToolBox directory of SPM12 
software [3], and its download address is 
http://www.fil.ion.ucl.ac.uk/spm/. Finally, in order to evaluate 

the influence of confounds on algorithms, confounds need to be 
added to the data generated by the model, and is generated by 
equation (6). The maximum order of the harmonics and the 
actual angular frequency in the confounds are set from the 
heartbeat and breath frequency inducing the confounds [28], 
and the parameters and steps of generation are shown in Table 
6-7. 

B. Algorithm Setting 

In order to evaluate the performance of CSCKS algorithm 
proposed in this paper, we compare it with the existing SCKS 
algorithm and DEM algorithm. In addition, the result of 
CSCKF is the forward filter value when the CSCKS algorithm 
converges, and the parameters and initialization conditions of 
the CSCKS and CSCKF algorithms are shown in Table 8. The 
detailed parameters of SCKS and DEM algorithms could be 
seen in [3], and the two algorithms here are realized from 
Matlab files, spm_SCK.m and spm_DEM.m in the ToolBox 
directory of SPM12. 

In summary, we applied four schemes to the same simulated 
data under varying levels of confounds (i.e., SIR). The four 
schemes included DEM, SCK and two variance of the extended 
filtering scheme (CSCKS and CSCKF). These two variables 
refer to the results from smoothing and filtering respectively 
(i.e., forward and backward estimation and forward estimation 
only). 

C. Experimental Methods 

The Monte Carlo method was used for the experiments in 
this section, and all results were averaged from the results of 
100 independent experiments. We conducted two groups of 
experiments under different integration steps and different SIR. 
The relevant parameters are as follows. 

• Sampling interval (repetition time) TR = 1 second. 

• Maximum number N  of loops in the algorithm is 32. 
• The signal-to-noise ratio (SNR) is 20 dB, the SNR is 

defined as 

   
22

1 1

10lg
L L

i j
i j

SNR = y y m
 

 
 

 
  ,            (27) 

TABLE III 
STATE AND OBSERVATION EQUATIONS OF BALLOON-WINDKESSEL 

HEMODYNAMIC MODEL 

 , ,ux = f x    , ,y g u x   

 1 1 2 1x x hєu        0 1 4 2 4 31 1y V k h k h h     

2 1 2x x h   3 31k h   

   1
3 2 3 3x h h h    1 4.3 u ek T   

   21

4 2 1 1
h

x h       2 exps e sk R T E  

  1
3 4 3 4h h h h    3 1 exp sk E   

x =[ 1 2 3 4, , ,x h h h ]T  

 =[ ,,  ]T  

Note:  expi ih x
 
makes ih

 
be constantly non-negative , i  = 2, 3 and 4. 

TABLE IV 
PARAMETERS OF BALLOON-WINDKESSEL HEMODYNAMIC MODEL 

 Description(Value)  Description(Value) 

1x  Vasodilatory signal   Resting oxygen extraction 

2h  Blood flow  fraction 

3h  Blood volume y  BOLD signal 

4h  Deoxyhemoglobin content 0V  Blood volume fraction(8) 

є  Neuronal efficiency 1~3k  The constant coefficient 

  Rate of signal decay u  Frequency offset(40.3) 

  Rate of flow dependent eT  Echo time(0.04) 

 elimination sE  Region specific ratios 

u  External input  of the echo(0.02) 

  Hemodynamic transit time sR  Slope of intravascular 

  Grubb's exponent  Relaxation rate(25) 

 
TABLE V 

INTERPOLATION NUMBER AND CORRESPONDING INTEGRAL STEP LENGTH 

AND DATA LENGTH 

  2,3,4,5,6,7,8 

t  0.5,0.33,0.25,0.2,0.17,0.14,0.13 

L  120,180,240,300,360,420,480 

 
TABLE VI 

MODEL PARAMETERS SETTING IN DATA GENERATION 

Model parameters Value 

0x  [0,0,0,0]T 

0  [0.65,0.41,0.98,0.32,0.34, 0.02,0.5]T 

  [2.4,-0.4,1.0,-0.8,0.6,0.2]T 

L  6 

Actual  angular frequency n  decreases from 0.55   to  0.67   

Nominal angular frequency   0.55  

Correlation matrix cR  1 0.5 0.2 0 0 0

0.5 1 0.5 0.2 0 0

0.2 0.5 1 0.5 0.2 0

0 0.2 0.5 1 0.5 0.2

0 0 0.2 0.5 1 0.5

0 0 0 0.2 0.5 1

 
 
 
 
 
 
 
 
  

 

 

TABLE VII 
STEPS OF CONFOUNDS GENERATION 

Steps: 

① Establish a matrix 1 2, , L  W=    , 

Where 1 cos0 , 2 cos1n n nL n t L n t     
T

, 2 cos 1 nL L n t    ,       

② Compute 1 2
c cW R W , 

③ Generate confounds T
cC = β W . 

 

TABLE VIII 
PARAMETERS AND INITIAL CONDITION SETTING OF CSCKS ALGORITHM 

 T0 0
ˆ 0,0,0,0x   20 20 20

,0 0 10 ,10 ,10diag   Q
 

T

1 2 30 0
ˆ , ,        6 6 6 610 ,10 ,10 ,10diag    pQ  

 ,1 10true
i i     4 4 310 ,10 ,10diag   sQ  

 T
0.65,0.41,0.34true    4 4 4 410 ,10 ,10 ,10diag    vQ  

 
T

0 0
ˆ 0,0,0,0,0,0  4 410 ,10   

 2 2 2 2

,0 0
10 ,10 ,10 ,10diag    

x
Q   310mQ diag   

 3 3 3 3

,0 0 10 ,10 ,10 ,10diag    Q
 0 0l   

3 310 ,10   310l   
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where y  is the mean of y , m is the measurement noise 
term in (7-b). 

• The SIR is defined as 

   
22 T

1 1

10lg
L L

i j j
i j

SIR = y y
 

 
 

 
    ,          (28) 

where y  is the mean of y . 
• The amplitude a  of the confounds and its corresponding 

SIR are shown in Table 9. 

In the results of this experiment, we use the relative error to 
evaluate the performance of estimation, and define it as 

 
1 1 1 1

ˆ 100%
n L n L

ij ij ij
j i j i


   

 
   
 
 z z z

  

,            (29) 

where ˆ
ijz

 
and ijz

 
represent a estimated value and a true value 

in the i th iteration of the j th loop, respectively, n  denotes 
the number of the loops, n  [1, N ], L  denotes the number of 
iterations. 

VII. EXPERIMENTAL RESULTS AND ANALYSIS 

A. Results under Fixed SIR and Integration Step 

Firstly, the estimation curves of each algorithm under fixed 
SIR and integration step are given. Fig. 2 gives the estimation 
results of each algorithm when SIR  = 15 dB and t  = 0.33 
seconds. The notation a.u. in y axis represents arbitrary unit [3]. 
In addition, as shown in Table 5, the length of the interpolated 
data corresponding to t  = 0.33 is 180. Considering that the 
length of the original experimental data generated is 60, 

however, we only extract 60 time points, which are interpolated 
data at the 1st, 4th, and 7th … positions, intervals of 3. From the 
results of Fig. 2(a), the estimation curves of CSCKS and 
CSCKF algorithms for the hidden states are coincident, and the 
maximum deviation value is only about 0.02 compared with the 
real curve, and the estimated curve is smoother. The estimation 
curves of SCKS and DEM algorithms are also similar, but they 
deviate significantly from the real curves, for the green, red and 
blue estimation curves, the maximum deviation value reaches 
0.04, for the black estimation curve, the maximum deviation 
value reaches about 0.07, and the estimation curve has large 
frequent fluctuations. The results show that the traditional 
SCKS and DEM have higher estimation error than CSCKS and 
CSCKF under such conditions of SIR and integration step. And, 
the performance of forward filtering and backward smoothing 
is the same in the proposed algorithm. In addition, we see that 
the estimation curves of CSCKS are delayed from the real 
curves, at about points 10, 25, 40 and 50. The reason is that the 
Kalman filter used by CSCKS needs to be iteratively updated 
through observations, and the tracking of the state is prone to 
lag. Fig. 2(b) shows the estimation curves for the biophysical 
parameters of the model. It can be seen from the figure that the 
deviation of the estimated values of   from the real values by 
CSCKS, CSCKF and SCKS algorithms is less than 0.01, which 
achieves a better estimation. For   and  , the estimation 
error of SCKS is also less than 0.01, and the estimation error of 
SCKS and CSCKF is about 0.02, which is slightly larger than 
SCKS algorithm. The maximum deviation of the parameter 
estimation by the DEM algorithm reaches 0.08, and the 
deviation is slightly larger than the previous three algorithms. 
Overall, the four algorithms have a good estimation of the 
model parameters. 

To further evaluate the effect of SIR and integration step on 
the performance of the algorithms, we will give experimental 
results from the following two aspects. 

B. Results under Variant SIR 

The experiments in this subsection consider the effect of SIR 
on the estimation of the algorithm. Fig. 3 shows the relative 
error curve of each algorithm changing with SIR when t  = 
0.33 seconds. From Fig. 3(a), we can see that as the SIR 
increases from 3 dB to 21 dB, the relative errors of CSCKS, 
CSCKF, SCKS, and DEM algorithms for the hidden states are 
reduced from  17%, 17%, 187%, and 175% to 16%, 16%, 73%, 
and 79%, respectively. Besides, regardless of how SIR changes, 
the CSCKS curve is always below the SCKS and DEM curves 

TABLE IX 
CONFOUNDS' AMPLITUDE AND CORRESPONDING SIR 

a  0.999,0.795,0.631,0.501,0.398,0.316,0.251,0.199,0.158,0.126 

SIR  3,5,7,9,11,13,15,17,19,21 

 

 
(a) Estimation results for the hidden states. 

 
(b)Estimation results for biophysical parameters. 

Fig. 2.  Estimated result When SIR  = 15 dB and t  = 0.33 sec. 

 
(a) Error curves for hidden states    (b) Error curves for biophysical parameters.

Fig. 3.  Estimation error curves at different SIR  when t  = 0.33 sec. 
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in Fig. 3(a), ie, the estimated error is smaller than the SCKS and 
DEM algorithms. In addition, it is also noted that the relative 
errors curves of SCKS and DEM have an intersection at about 
SIR  = 9 dB. When SIR is less than 9 dB, the relative error of 
the latter is smaller than the former, and when it is greater than 
9 dB, the situation is the opposite. This shows that under the 
small SIR, the relative error of the DEM is smaller than the 
SCKS algorithm. Fig. 3(b) shows the relative error estimation 
curves of the four algorithms for biophysical parameters. For 
CSCKF/CSCKS and SCKS, the three curves are 
CSCKF/CSCKS and SCKS from high to low, and the relative 
error values vary from 0.2% to 0.5% and around 0.01% 
respectively, and their minimum errors and maximum errors do 
not differ by more than 1%. The results show that the change of 
SIR has little effect on the parameters estimation of the 
CSCKF/CSCKS and SCKS algorithms, and the estimation 
errors of the three algorithms are maintained at a low level. The 
relative error range of DEM is 9%-13%, and the estimation 
error is significantly higher than the CSCKF/CSCKS and 
SCKS algorithms and it is hardly affected by the SIR. 

Fig. 4 shows the estimated curves when t  = 0.13 seconds. 
Similar with Fig. 3(a), the estimation error curves for the 
hidden states in Fig. 4(a) also decrease as SIR increases. In 
addition, regardless of how SIR changes, the CSCKS curve is 
always below the SCKS and DEM curves in Fig. 3(a), which 
still shows that the estimated error of CSCKS is smaller than 
SCKS and DEM. In addition, the intersection of SCKS and 
DEM curves in Fig. 4(a) is about SIR  is 11 dB. This result 
means that the estimated error of DEM is smaller than SCKS 
under smaller SIR. The high to the low order of the curves in 
Fig. 4(b) is also the same as the curves of Fig. 3(b), and the 
error range is between 0%-17%, which is also similar to Fig. 
3(b). In addition, it should be noted that the curves of CSCKF 
and CSCKS are not completely coincident compared with the 
previous results, which indicates that the smoothing part would 
affect the algorithm. 

C. Changing the Integration Step 

In this subsection, the experiments consider the influence of 
the integral step on the estimation results of the algorithms. Fig. 
5 shows the relative error curves of the four algorithms 
changing with integration step under a small 
signal-to-interference ratio SIR  = 3 dB. It can be seen from Fig. 
5(a) that the relative errors of SCKS and DEM both reach 170%, 
and the curves do not change much with the integration step. 

On the other hand, the two curves of CSCKS and CSCKF 
coincide, and are around 20%, except 28% at the integration 
step size of about 0.13 seconds. This result shows that under 
lower SIR, the integration step does not improve the estimation 
performance of the traditional SCKS and DEM algorithms, and 
the small integration step increases the estimation error of 
CSCKS. Fig. 5(b) shows the relative error of the biophysical 
parameters estimated by the four algorithms changing with 
integration step at SIR  = 3 dB. The error curve of CSCKS 
algorithm increases first and then decreases as the integration 
tep increases, reaching a peak of 0.4% at about 0.14 second, and 
tending to be 0.2% at other times. Overall, the estimation errors 
of the CSCKF/CSCKS and SCKS algorithms are all less than 
0.5%, which indicates that the three algorithms have a good 
estimation of biophysical parameters. In addition, contrary to 
the error estimation curve of CSCKS, the DEM algorithm 
decreases first and then increases with the integration step, and 
its minimum trough value exceeds 9%. Compared with the 
other three algorithms, it has a large estimation error. It is worth 
noting that the results of SCKS in Fig. 5 is the same as those in 
Fig. 3 and 4, and the error is still maintained at 0.01%. The 
reason is that the error covariance of the biophysical parameter 
in the original implementation spm_SCK.m of the algorithm is 
set to a small value. 

Fig. 6(a) shows the relative error curves of the hidden states 
estimated by the four algorithms changing with integration step 
at higher SIR  = 21 dB. As can be seen from Fig. 6(a), the four 

curves are arranged from high to low as DEM, SCKS and 
CSCKF/CSCKS, where the minimum relative error of DEM is 
approximately 76%, and is less affected by the variation of the 
integration step. The estimation error of SCKS also decreased 
from about 72% to 68% with the increase of the integration step, 
which only changed by 4%. On the other hand, the trend of the 

 
(a) Error curves for hidden states    (b) Error curves for biophysical parameters.

Fig. 4.  Estimation error curves at different SIR  when t  = 0.13 sec. 

 
(a) Error curves for hidden states    (b) Error curves for biophysical parameters.

Fig. 5. Estimation error curves at different t  when SIR  = 3 dB. 

 
(a) Error curves for hidden states    (b) Error curves for biophysical parameters.

Fig. 6. Estimation error curves at different t  when SIR  = 21 dB 
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curves of CSCKS and CSCKF is the same as that of Fig. 5 and 
their relative errors are around 18% except a larger value 26% 
at the integration step t  = 0.13 seconds. This result shows 

that under higher SIR, the integration step has little effect on the 
estimation performance of the four algorithms. Fig. 6(b) shows 
the relative error of the biophysical parameters estimated by the 
four algorithms changing with integration step at SIR  = 21 dB. 

The implementation trend of the four algorithms in the figure is 
also consistent with the results of Fig. 5. The estimation error of 
the CSCKF/CSCKS and SCKS algorithms all does not exceed 
1%, which indicates that under higher SIR, the three algorithms 
have a good estimation for the biophysical parameters 
regardless of the integration step. However, the relative error 
curves of the DEM algorithm increases first and then decreases 
with the integration step, and its maximum peak value reaches 
17%, indicating that the estimation of biophysical parameters is 
slightly worse than the other three algorithms. 

VIII. DISCUSSION 

In this paper, we study how to estimate the hidden states and 
biophysical parameters from fMRI observation signals. In 
experiments, we compare the proposed CSCKS algorithm with 
existing SCKS and DEM schemes. However, there are some 
problems which need further discussion about the model and 
the estimation algorithms.  

The first problem is to compare the proposed Kalman filter 
with a linear regression method, especially in environment with 
real fMRI data. Since confounds are expressed as some 
trigonometric functions with fixed angular frequencies, can a 
linear regression estimate and remove the confounds? For this, 
we download a group of real fMRI data, MoAEpilot.zip from 
SPM (Statistical Parametric Mapping) website 
https://www.fil.ion.ucl.ac.uk/spm/data/Auditory. This data is 
preprocessed by SPM12 software, including realignment, 
coregistration, normalization, smooth and adjustment. The 
coordinates of the extracted BOLD signal are (60, -19, 11). 
With the real data, we then compare the performance of a linear 
regression with our CSCKS. Note that the hemodynamic model 
in this paper is a differential non-linear model and a linear 
regression is not easy to directly apply to it. Thus, we consider a 
linear convolutional model [33] shown in Fig. 7(a). Through 
the real BOLD signal, the linear regression can estimate a scale 
coefficient called   [33]. After a statistical test on  , it can be 

inferred whether the location of the BOLD signal is active.  Fig. 
7(c) gives the estimation of the linear regression and CSCKS. 

From the figure, the value of   estimated by SCKS without 

considering the confounds deviates much from the expected 
values than the other two algorithms. On the other hand, the   

curve estimated by CSCKS fluctuates around the expected   

while the method of linear regression differs from the expected 
  by one. One likely reason is that in addition to the presence 

of confounds, there may be other noises, such as Gaussian noise. 
Therefore, CSCKS has better estimation performance than 
Linear. In addition, as can be seen from the figure, the   curve 

of CSCKS has a higher resolution. Since CSCKS is a 

successive state estimation, it can exhibit the change of   with 

time. In contrast, the linear method treats   as a constant, so it 

does not change over time. 

Second, the confounds in fMRI data should be correlated 
with input stimuli. If the additive confounds is modeled as a 
completely independent fluctuation from the input stimuli, this 
may not be the case sometimes. In reality, both cardiac and 
respiration can be correlated with the task timing. The 
correlation with the input stimuli is the reason why these 
confounds become so hard to deal with. In fact, we analyzed the 
frequency of the input stimuli in the simulation experiment 
above and then make the frequency of the confounds and that of 
the input have overlaps. Fig. 7(b) gives the computational 
results of the correlation matrix of confounds with the input 
stimuli. From the figure, the correlation value of the input 
stimuli with 6th component in the confounds is about 0.8, 
which displays some correlation between them. 

Finally, dose the estimation of the extra parameter, i.e. the 
coefficients of the confounds increases the chance of falling 
into false positive? For the traditional SCKS, it not only 
estimates the hidden state and biophysical parameters, but also 
estimates the input stimulus. However, in some fMRI 
experiments for brain cognitive, these external stimuli can be 
pre-designed and thus be treated as a known variable. Therefore, 
sometimes the estimation of the input is not needed. Although 
the coefficient vector of the confounds is introduced to CSCKS, 
the coefficient of the confounds replace the input. That is, the 
original estimate has three items and it still has three items now. 
This will not cause the equation to become an indefinite 
equation.  

IX. CONCLUSION 

The problem studied in this paper is to estimate the hidden 
states and biophysical parameters in a hemodynamic model by 

 
(a)                                                        (b) 

    (c) 
Fig. 7. (a) A convolutional model for BOLD signal, (b) A correlation matrix 

for confounds with input signal, (c) Estimation of   in a real fMRI data. 



stimulus HRF BOLD
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fMRI observation signals. Since the fMRI signal is susceptible 
to confounds signals, we consider a state space equation for a 
hemodynamic model with confounds. For this augmented state 
space model, we propose a CSCKS algorithm to improve 
estimated performance under confounds. In experiments, we 
use a Balloon-Windkessel model to generate simulation data. 
The estimation error of the proposed CSCKS algorithm was 
compared with existing SCKS and DEM schemes under 
different SIR and integration step, we obtained the following 
important results. 

When the integration step is fixed and SIR is less than 21 dB, 
the relative error of the existing SCKS and DEM algorithms for 
the estimation of hidden states is more than 73%, and the 
relative minimum error of the proposed CSCKS algorithm is 
only 16%. In addition, when SIR is fixed and the integration 
step is less than 0.14 seconds, the maximum relative error of 
CSCKS is 28%, and when it is greater than 0.14 seconds, the 
error can be reduced to 20%. In summary, when SIR is lower, 
the proposed CSCKS algorithm for the hidden state estimation 
has less error than the existing algorithms, and too small 
integration step will increase the estimation error of the 
proposed algorithm. 

The code for the CSCKS and CSCKF algorithms proposed in 
this article has been uploaded to GitHub, and its download 
address is https://github.com/lumingzhi/CSCKF-CSCKS. 
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