
Binary Tree Slotted ALOHA for
Passive RFID Tag Anticollision

Haifeng Wu, Yu Zeng, Jihua Feng, and Yu Gu

Abstract—In order to enhance the efficiency of radio frequency identification (RFID) and lower system computational complexity, this

paper proposes three novel tag anticollision protocols for passive RFID systems. The three proposed protocols are based on a binary

tree slotted ALOHA (BTSA) algorithm. In BTSA, tags are randomly assigned to slots of a frame and if some tags collide in a slot, the

collided tags in the slot will be resolved by binary tree splitting while the other tags in the subsequent slots will wait. The three protocols

utilize a dynamic, an adaptive, and a splitting method to adjust the frame length to a value close to the number of tags, respectively. For

BTSA, the identification efficiency can achieve an optimal value only when the frame length is close to the number of tags. Therefore,

the proposed protocols efficiency is close to the optimal value. The advantages of the protocols are that, they do not need the

estimation of the number of tags, and their efficiency is not affected by the variance of the number of tags. Computer simulation results

show that splitting BTSA’s efficiency can achieve 0.425, and the other two protocols efficiencies are about 0.40. Also, the results show

that the protocols efficiency curves are nearly horizontal when the number of tags increases from 20 to 4,000.

Index Terms—RFID, anticollision, ALOHA, estimation of the number of tags, passive

Ç

1 INTRODUCTION

INTERNET of Things (IoT) is a vision where all objects can be
uniquely identified and connected through a wireless or

wired communication network [1]. The purpose of IoT is to
link real-world objects with virtual information, to identify,
track, and manage all goods available, and then to set up a
global net among product, customer, company, enterprise,
and government. Radio Frequency Identification (RFID) is a
technical keystone of IoT since small passive RFID tags
make it possible to link millions and billions of physical
products with virtual information. When millions and
billions of tags are used, it is probable that there will be
more than one tag within the interrogatory zone of a reader
at some time. When the tags transmit their signals
simultaneously to the reader, collisions will happen because
the reader identifies the tags through communication over a
shared wireless channel. Therefore, RFID tag anticollision
algorithms will play an important role in IoT.

In the algorithms for passive RFID tag anticollision, a

binary tree slotted ALOHA (BTSA) algorithm is not new.

The prototype of BTSA algorithm is proposed by Capeta-

nakis [14], who applied BTSA to random multiaccess

communication systems. Several RFID tag anticollision

protocols, such as Modified Q [21], adaptive binary splitting

(ABS) [22] and framed-slotted ALOHA with robust estima-

tion and binary selection (EB-FSA) [23] actually adopt the

idea of BTSA algorithm. BTSA algorithm initializes a frame

constituting a number of slots and randomly assigns tags to
these slots. If some tags collide in a slot, the collided tags in
the slot will be resolved by binary tree (BinTree) splitting at
once while the other tags in the subsequent slots will wait.
When an initial frame length, i.e., the slot number in an
initial frame is equal to the number of tags, BTSA can
achieve a maximum efficiency value of about 0.43 [14],
which is higher than the efficiency of dynamic frame slotted
ALOHA (Dynamic FSA) [6], [7], [8], [9], [10] protocol and
pure binary tree protocol [15], and nearly equal to the ideal
tree slotted ALOHA (TSA) protocol’s [11], [12], [13] optimal
efficiency. In order to obtain the maximum efficiency, the
initial frame length should be set according to the number
of tags which is, however, usually unknown to a reader.
Therefore, the number of tags needs to be estimated. The
protocols adopting BTSA algorithm, such as ABS do not
conduct the estimation, which will degrade its efficiency
when the number of tags increases or decreases much.
Although EB-FSA and Modified Q conduct the estimation to
achieve higher efficiency, they will bring about the dis-
advantages of estimation of the number of tags.

Generally, the estimation of the number of tags will have
the following disadvantages. First, the estimation increases
computational cost. Most of conventional accurate esti-
mates, such as Vogt estimate [7], maximum a posteriori
(MAP) estimate [9], Bayesian estimate [10] and estimates in
[16], [17] need to search a maximum value in a range of the
number of tags. If the range is large, the times of searching
will be very large. This will result in terrible computational
complexity. Although estimates in [24], [28], [29] have
lower cost, the estimates require tags to apply several hash
functions and thus increase the cost of tags. Second, the
estimation error degrades the efficiency performance. Even
accurate estimates have to introduce estimation error. For
example, when the number of tags is much larger than the
frame length, the number of idle slot and successful slot in

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 24, NO. 1, JANUARY 2013 19

. The authors are with the School of Electrical and Information Technology,
Yunnan University of Nationalities, Kunming 650500, China.
E-mail: {whf5469, yv.zeng}@gmail.com, fengjihua@21cn.com,
maggie.guyu@hotmail.com.

Manuscript received 1 Dec. 2011; revised 28 Jan. 2012; accepted 16 Mar.
2012; published online 28 Mar. 2012.
Recommended for acceptance by E. Li.
For information on obtaining reprints of this article, please send e-mail to:
tpds@computer.org, and reference IEEECS Log Number TPDS-2011-12-0875.
Digital Object Identifier no. 10.1109/TPDS.2012.120.

1045-9219/13/$31.00 � 2013 IEEE Published by the IEEE Computer Society

the frame may be zero. In this case, Vogt, MAP, and
Bayesian estimate cannot estimate the number correctly.
Thus, a frame length’s adjustment according to the
incorrectly estimated results will degrade the efficiency
performance. Third, the variance of the number of tags will
result in the variance of efficiency. In general, the
estimation of the number of tags requires observation
results, which can be collected by a reader after completing
a frame, such as idle slot, collision slot, and successful slot
quantity in a frame. For this reason, an initial frame length
cannot be set according to the estimated number of tags,
but be set to a fixed value beforehand because the reader
cannot collect the observation results before completing the
initial frame. If the number of tags suddenly increases or
decreases much, the initial frame length may be much
larger or less than the number of tags. This will lead to
underutilization of channel and low efficiency.

In this paper, we utilize BTSA algorithm to propose three
passive RFID tag anticollision protocols, which are dynamic
BTSA protocol, adaptive BTSA protocol, and splitting BTSA
protocol, respectively. Since all of the proposed protocols
can adjust the frame length to a value close to the number of
tags, their identification efficiency can achieve a value close
to an optimal one. From computer simulations results,
splitting BTSA’s efficiency can achieve 0.425, and the other
two protocols efficiency is about 0.40. The advantages of the
three propose protocols are to require no estimation of
the number of tags, and their efficiencies are not affected by
the variance of the number of tags. Their efficiency is not
only higher than the existing protocols without estimation,
but also close to and even higher than the TSA-based
protocols with estimation [11], [12], [13].

Our contributions are summarized as follows:

. We propose a novel protocol to adjust an initial
frame length, called dynamic BTSA. The protocol
can obtain the frame length close to the number of
tags by judging only the first slot type.

. We make an improvement on Q algorithm, i.e.,
adaptive BTSA. The improvement advances the
identification efficiency from 0.34 to 0.40.

. We prove that TSA will not have higher identifica-
tion efficiency than binary tree under a condition
that an initial frame length is equal to the number of
tags. Since splitting BTSA makes the condition
guaranteed, a reader can adopt binary tree to resolve
collided tags, instead of TSA.

. We reduce the RFID system’s computational cost.
Since the proposed protocols do not need to estimate
the number of tags and avoid the computational cost
of the estimation, the RFID system has lower
computational cost for running the proposed proto-
cols on hardware of a reader.

The rest of this paper is organized as follows. Section 2
contains the related work. We describe problems of BTSA
algorithm in Section 3. Section 4 proposes three BTSA
protocols and Section 5 analyzes the BTSA protocols
performance. In Section 6, we provide computer simula-
tions to demonstrate the performance of the proposed
protocols. Finally, conclusions are drawn in Section 7.

2 RELATED WORK

In conventional protocols for passive RFID tag anticollision,
ALOHA-based protocols are very popular. The protocols
utilizing BTSA algorithm is also ALOHA-based protocol.
Now, 13.56 MHz ISM band EPC Class 1 [2], ISO 18000-6
Type A [3], Type C [4], and EPCglobal Generation 2 (EPC
Gen 2) [5] all use ALOHA-based protocols. The idea of
ALOHA-based protocols is to divide access time of tags into
a number of slots, and each tag responds at a random slot. If
tags collide in a slot, which means that at least two tags
responses in the slot. The collided tags need to randomly
reselect slots. In ALOHA-based protocols, identification
efficiency is related to the number of tags and slots. If the
number of slots is much less than that of the tags, collision
probability will increase. On the other hand, if the number
of slots is much larger than that of tags, many idle slots may
be produced. These will both decrease the identification
efficiency. Hence, the slot number needs to be adjusted
according to the number of tags which is, however, usually
unknown to a reader. Therefore, from whether to estimate
the number of tags or not, ALOHA-based protocols can be
categorized into protocols with estimation and protocols
without estimation.

In ALOHA-based protocols with estimation, dynamic
frame slotted ALOHA [6], [7], [8], [9], [10] is widely applied.
Dynamic FSA configures an identification process with
some continuous frames consisting of slots, and dynamically
adjusts a frame length. Compared with fixed framed slotted
ALOHA, Dynamic FSA can achieve a higher efficiency value
of 0.37. To improve the identification efficiency, someone
integrates tree algorithms into ALOHA-based protocols,
and proposes several hybrid protocols: TSA protocol [11],
dynamic TSA protocol (DyTSA) [12], binary splitting TSA
(BSTSA) protocol [13], adaptive splitting-based arbitration
protocol (ASAP) [24] and a hybrid protocol in [30], where
tree algorithms resolve a collision by successively muting
subsets of tags that are involved in the collision [14], [15].
The hybrid protocols can achieve higher efficiency than
Dynamic FSA. Since the protocols above require the
information about the number of tags and thus require the
estimation, however, they have to introduce the disadvan-
tages of estimation mentioned in Section 1.

For the disadvantages of ALOHA-based protocols with
estimation, there emerge ALOHA-based protocols without
estimation, such as Q algorithm [4], [5] in ISO 18000-6 Type
C and EPC Gen 2 standard. Q algorithm utilizes an adaptive
method, slot-by-slot adjusting a frame size by judging every
slot type. The advantage of Q algorithm is that the frame
will converge on a reasonable size without the estimation.
However, since no estimation is conducted, distance
between the frame length and the number of tags in Q
algorithm is more than that in the protocols with estimation.
Q algorithm only has an efficiency value of about 0.34 [19],
[21], which is not only lower than the hybrid protocols but
also lower than Dynamic FSA protocols. Although some
references adopt several methods to improve Q algorithm’s
efficiency, for example, of optimal Q algorithm [18],
the method still requires the estimation before setting a
frame size. Some improved Q algorithms [19], [20] propose
methods of changing step size to enhance the efficiency.

20 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 24, NO. 1, JANUARY 2013

Although these improved algorithms conduct no estima-
tion, they do not enhance the efficiency much and their
efficiencies still does not surpass the hybrid protocols.

3 PROBLEM DESCRIPTION

BTSA algorithm’s prototype is proposed in [14]. The
algorithm initializes a frame and divides the frame into a
number of slots. Each tag will randomly selects a slot and
transmit its ID to the reader only once in the slot. For a given
time slot, the reader obtains only three possible outcomes:
idle slot, collision slot, and successful slot. For a tag in a
successful slot, the tag can be identified successfully, and the
identified tag will not be activated in the subsequent slots.
Tags in a collision slot collide and will be resolved by binary
tree splitting at once, while other unidentified tags will wait
until the collided tags are successfully resolved. In BinTree,
the collided tags set will be continuously split into two sets
until each set has only a tag. When tags in all slots are
successfully identified, the identification completes. Fig. 1
shows an execution example of BTSA algorithm, where tags
in the first slot and the fourth slot in the frame with length L0

collide, and are resolved by two BinTrees. From Fig. 1, the
algorithm is actually some BinTrees nested in a framed
ALOHA algorithm. More examples of BTSA can be seen in
Section 1 of supplementary file, which can be found on the
Computer Society Digital Library at http://doi.
ieeecomputersociety.org/10.1109/TPDS.2012.120.

Since BTSA is based on ALOHA algorithm, its identifica-
tion efficiency will be related to the number of tags and the
frame length. If the frame length is much less or larger than
the number of tags, these both will produce excessive slots.
Fig. 2 shows BTSA algorithm’s efficiency under different Q,
where the initial frame length L ¼ 2Q, and the efficiency is
defined as a ratio between successful slot number and total
slot number. From Fig. 2, we can see that, the efficiency is
much related to the initial frame length. Only when the
initial frame length is closed to the number of tags, higher
efficiency can be obtained.

Therefore, if BTSA algorithm wants to obtain higher
efficiency, it should let the initial frame length be close to the
number of tags. Since the prior knowledge of the number of
tags is generally unknown to a reader, however, the reader
cannot set the initial frame length value according to the
number of tags. Thus, the efficiency of BTSA algorithm
cannot always obtain higher efficiency, either. Some proto-
cols adopting BTSA algorithm conduct the estimation of the
number of tags before setting the initial frame length.
However, this conduction will bring about the estimation’s

disadvantages. The rest of this paper will propose three
protocols which adjust the frame length without the tag
estimation, and have higher efficiency in a wide range of the
number of tags.

4 BTSA PROTOCOL

4.1 Dynamic BTSA Protocol

This section will propose a dynamic BTSA protocol, whose
procedure involves dynamic frame length adjustment and
BTSA algorithm. The benefit of dynamic BTSA is that its
adjustment procedure is very simple because a reader can
obtain a reasonable frame length by judging only the first
slot type.

Fig. 3 shows a flowchart of dynamic BTSA protocol.
Initially, a frame length L ¼ 2Q, where Q0 ¼ 4:0. Then, a
reader broadcasts an AdjQuery command with L. After a
tag receives the command with L, the tag’s Counter selects a
random integer from 0 to L� 1. Tags whose Counters select
0 can transmit their IDs, and the reader will detect the tags
responses in the first slot. If the first slot is collisional,
Q ¼ Qþ 1, and the reader will broadcast a command with a
new L and then detect tags responses in the first slot of next
frame. If the first slot is idle, Q ¼ Q� 1, and the reader will
also broadcast a new L and then detect tags responses. If the
first slot is successful, Q will not be changed and the
reader’s operation will transit to BTSA algorithm.

Figs. 4 and 5 show reader’s pseudocode and tag’s
psedudocode of dynamic BTSA protocol, respectively. In
Fig. 4, function DyBTSA() implements dynamic BTSA’s

WU ET AL.: BINARY TREE SLOTTED ALOHA FOR PASSIVE RFID TAG ANTICOLLISION 21

Fig. 1. An execution example of BTSA algorithm.

Fig. 2. BTSA algorithm’s efficiency under different initial frame length.

Fig. 3. Flowchart of dynamic BTSA protocol.

procedure given in Fig. 3 and function BTSA() implements
BTSA algorithm. In BTSA(), the reader will transmit a
command starting a frame, Query. The reader has a slot
counter (SC), whose value is initialized to 0 at the beginning
of the frame and incremented by 1 at the end of each slot.
When the value of SC is equal to the frame length L, the
frame finishes. According to tags IDs received in a slot, the
reader will know the type of the slot and inform all tags
the type by transmitting a feedback f . If the slot is readable,
that means only a tag transmit its ID to the reader. Then, the
reader can identify the tag. If the slot is collisional,
the reader will resolve the collided tags by BinTree splitting.
The BinTree procedure is implemented by function Bin-
Tree() in reader’s pseudocode and function TagIdentify() in
tag’s pseudocode, respectively. In BinTree(), a reader needs
to judge whether a binary tree is finished or not. Let the
initial value of a variable B be 2. If a current slot is
collisional, B ¼ Bþ 1, If not, B ¼ B� 1. When B ¼ 0, the
reader know that the binary tree finishes. In TagIdentify(), a
tag’s Counter will be operated in two cases. First, when f is
successful, the tag’s Counter is decremented by 1 and the tag
will not be activated in the subsequent slots. Second, when
f is collision, the tag’s Counter is incremented by a random
binary number 0 or 1. If the tag’s Counter does not select 0
when the tag receives a command Query with L, the
Counter will also be operated in two cases. When f is
collisional, the tag’s Counter is incremented by 1; when
noncollisional, the Counter decremented by 1.

Note that tags implementing BTSA algorithm do not
need to distinguish whether they are in BinTree algorithm

or ALOHA algorithm. The difference of BTSA from BinTree
is only that the initial values of tag counters in BTSA can
select random numbers, while those in BinTree are all 0.
BTSA’s counters will implement the same increment or
decrement operation as BinTree algorithm after the coun-
ters select values. Therefore, BTSA will not increase the
burden on tags.

Dynamic BTSA protocol adjusts a frame length actually
based on a probabilistic method. If the frame length is larger
than the number of tags, probability that the first slot in the
frame is idle will increase; if a frame length is less then the
number of tags, probability that the first slot in the frame is
collision will also increase. Therefore, the adjusted frame
length may be closer to the number of tags than the original
frame length. For this reason, Dynamic BTSA protocol is
similar to Q algorithm [3], [4] since Dynamic BTSA protocol
is not sensitive to the size of tag population, either.
However, Dynamic BTSA protocol adjusts the length by
judging only the first slot, instead of judging every slot in Q
algorithm. Furthermore, Dynamic BTSA protocol calls
BinTree, which can reduce collision between tags and
improve identification efficiency. More comparisons be-
tween Dynamic BTSA and Q algorithm can be seen in
Section 2 of the supplementary file, available online.

4.2 Adaptive BTSA Protocol

Since EPC Gen2 has been widely applied and becoming
more and more popular, we make an improvement on
EPC’s Q algorithm and propose adaptive BTSA in this
section. The protocol will adjust a frame length based on
tags responses in a current slot and can maintain a
reasonable frame length for the number of tags.

Adaptive BTSA protocol first adopts the technique of Q
algorithm [3], [4]: when a frame has excess collision slots, a
reader will end the frame early and broadcast a command
with another larger frame length; when a frame has excess
idle slots, a reader will also end the frame early and

22 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 24, NO. 1, JANUARY 2013

Fig. 4. Pseudocode of dynamic BTSA protocol: reader procedure.

Fig. 5. Pseudocode of dynamic BTSA protocol: tag procedure.

broadcast another less frame length. The technique can be
realized by parameters Q and Qfp. A frame length L is set
by 2Q and Q algorithm can adjust a frame length by
adjusting Q. The value of Q is round (Qfp), where Qfp is a
floating representation of Q. That is, a reader rounds Qfp to
an integer value and substitutes this integer value for Q.
Initially, a frame length L ¼ 2Q, where Q ¼ 4:0. Then, Q will
be dynamically adjusted slot-by-slot, and Q’s value is round
(Qfp), where Qfp is given by [3], [4]

Qfp ¼ Qfp þ C; if a collision slot
Qfp ¼ Qfp � C; if a idle slot
Qfp ¼ Qfp þ 0; if a successful slot

8<
: ð1Þ

in which C is a step size. The selection of C is fully specified
in Q algorithm, EPC C1 G2 [5]. Typical values for C are
0:1 < C < 0:5, and small values of C when Q is large, and
larger values of C when Q is small. A reader starts with a
new frame by judging whether round ðQfpÞ ¼ Qfp or not. If
round (Qfp) is not equal to Qfp, the reader will start with a
new frame, whose frame length is set by a new value of Q.

Fig. 6 gives a flowchart of adaptive BTSA protocol,
where function newframesize(Q) implements that a new
frame start and it frame length is 2Q. Actually, adaptive
BTSA consists of Q algorithm and nested BinTrees, and its
difference from Q algorithm is that when a current slot is
collisional and round ðQfpÞ ¼ Q, collided tags in the slot
will be resolved by BinTree at once. Only when all the
collided tags in the slot are resolved successfully, tags in the
next slot will be read. Figs. 7 and 8 give pseudocode of
adaptive BTSA protocol.

In adaptive BTSA, an initial frame length may be much
less or larger than the number of tags. However, the frame
length will be slot-by-slot adjusted by (1). That is, the frame
length may be adjusted along time, and eventually maintain
a close value to the number of tags. Thus, the adjustment
guarantees that the BinTree nested in Q algorithm has a
higher value of efficiency.

4.3 Splitting BTSA Protocol

Although dynamic BTSA protocol and adaptive BTSA
protocol can adjust a frame to a reasonable length for the
number of tags, the adjustment cannot ensure that the
frame length is exactly equal to the number of tags and thus
cannot ensure that the protocols adopting BTSA algorithm
achieve a maximum efficiency value. This section proposes
a splitting BTSA protocol to make the frame length closer to
the number of tags, and further enhance the efficiency.

Splitting BTSA protocol consists of a splitting step and a
BTSA algorithm step. Fig. 9 shows the execution of splitting
BTSA protocol. The splitting step is similar to BSTSA protocol
[13], where a reader will repeatedly splits a left tag set

WU ET AL.: BINARY TREE SLOTTED ALOHA FOR PASSIVE RFID TAG ANTICOLLISION 23

Fig. 6. Flowchart of adaptive BTSA protocol.

Fig. 7. Pseudocode of adaptive BTSA protocol: reader procedure.

Fig. 8. Pseudocode of adaptive BTSA protocol: tag procedure.

produced in the last splitting process until the reader detects
an idle or a successful slot. When the splitting step is finished,
several right tag sets will be produced and the reader will

perform the BTSA algorithm step on the right sets, respec-
tively. If nLefti denotes the number of tags in the ith level left
set, nLefti can be known because it is the number of

identified tags and can be given by

nLefti ¼ nLefti�1 þ nRighti�1;

where nRighti�1 denotes the number of tags in the ði� 1Þth
level right set. Then, an initial frame length in BTSA
algorithm performed on the ith level right set, can be given by

Li ¼ nLefti: ð2Þ

Since the protocol adopts randomly binary splitting, we will

have

nLefti � nRighti; when i! þ1:

Therefore, we can ensure that BTSA algorithm performed
on each right set will have a higher efficiency value. Figs. 10
and 11 give pseudocode of splitting BTSA protocol. If a

reader broadcasts a SplitQuery command, the splitting step
will be started. When the splitting step is finished, levels
number of binary splitting tree, level and feedback informa-

tion of the last slot type, f can be obtained. Next, the reader
performs BTSA algorithm step on each right set. An initial
frame length in BTSA algorithm performed on the first right
set, L0 is set to 1, and the number of tags in the first right set,

nRight0 is set according to f . If f is successful, nRight0 ¼ 1;
if idle, nRight0 ¼ 0. The initial frame length in the
subsequent right sets, nRighti, i > 0 is set by (1). A tag is
operated on splitting step or BTSA algorithm step according

to received SplitQuery or Query. If a reader broadcasts a
SplitQuery command, the BTSA step will be started. In
addition, BTSA algorithm in splitting BTSA protocol is a
little different from that in dynamic and adaptive BTSA

protocol: if a tag whose Counter is 0 receives Query, its
Counter will select a random integer from 0 to Li � 1; if a tag
whose Counter is not 0 receives Query, its Counter will be

added to a number of Li � 1. The difference will make it
easy for a reader to perform BTSA algorithm on each tag
set, respectively.

5 PERFORMANCE ANALYSIS

5.1 BTSA Algorithm’s Optimal Efficiency

In this section, we analyze the total slot number for

identifying all tags in BTSA, and then analyze the system

efficiency in BTSA. The total slot number is defined by a

sum of the number of idle slots, successful slots and

collision slots, and the system efficiency is defined by a ratio

between the successful slot number and the total number.

Definition 1. Let T denotes the slot number which BTSA

expends on identifying tags inside a reader’s range. Then, the

slots number T can be given by

T ¼ TC þ TI þ TS; ð3Þ

where TC , TI , and TS denote the number of collision slots, idle

slots, and successful slots, respectively.

24 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 24, NO. 1, JANUARY 2013

Fig. 9. Execution of splitting BTSA protocol.

Fig. 10. Pseudocode of splitting BTSA protocol: reader procedure.

Fig. 11. Pseudocode of splitting BTSA protocol: tag procedure.

Definition 2. Let P denotes the system efficiency when BTSA

identifies all tags inside a reader’s range. Then, the efficiency P

can be given by

P ¼ E TSð Þ
E TCð Þ þ E TIð Þ þE TSð Þ

; ð4Þ

where Eð�Þ denotes an expectation value.

Lemma 1. Let TBinTreeðrÞ denotes the number of slots expended

by BinTree to identify r tags. Then, TBinTreeðrÞ is given by

TBinTreeðrÞ ¼
4; r ¼ 2
2þ
Pr�1

i¼2
ðriÞ0:5r�1TBinTreeðiÞ
1�0:5r�1 ; r > 2:

(
ð5Þ

Proof. Given one of the time slots, the number of tags

allocated in the slot is a binomial distribution with r

Bernoulli experiments and 1=L occupied probability. The

probability of finding i tags in the slot is therefore given

by [6], [7], [8], [9], [10], [11]

pðL; r; ciÞ ¼
r
i

� �
1

L

� �i
1� 1

L

� �r�i
: ð6Þ

The probability applies to all L slots; thus, the expected

value of the number of slots with occupancy number is

given by

EðL; r; ciÞ ¼ L
r
i

� �
1

L

� �i
1� 1

L

� �r�i
: ð7Þ

Since the binary tree splitting can be considered as an

ALOHA procedure with a frame length L ¼ 2, the total

number of slots expended by binary tree to identify two

tags is

TBinTreeð2Þ ¼ 2þ Eð2; 2; c2ÞTBinTreeð2Þ:

Since Eð2; 2; c2Þ ¼ 0:5, we have

TBinTreeðrÞ ¼ 4; r ¼ 2: ð8Þ

How to obtain (8) can be seen in Section 3 of the

supplementary file, available online. When r > 2,

TBinTreeðnÞ ¼ 2þEð2; cnÞTBinTreeðnÞ

þ
Xn�1

r¼2

Eð2; crÞTBinTreeðrÞ:
ð9Þ

Likewise, substituting (7) into (9), we have

TBinTreeðrÞ ¼
2þ

Pr�1
i¼2

r
i

� �
0:5r�1TBinTreeðiÞ

1� 0:5r�1
; r > 2: ð10Þ

From (8) and (10), Lemma 1 can be yielded. tu

Theorem 1. The optimal number of slots expended by BTSA

algorithm to identify n tags is

T �BTSAðnÞ � 2:33n: ð11Þ

Proof. Given an initial frame lengths L, the number of

slots expended by BTSA algorithm to identify n tags is

given by

TBTSAðL; nÞ ¼ Lþ
Xn
r¼2

EðL; crÞTBinTreeðrÞ: ð12Þ

When L ¼ n, BTSA algorithm expends the least number
of slots for identifying n tags. In this case, the number
of slots is optimal. When L ¼ n and L! þ1, from (7),
we have

EðL; crÞjL¼n;L!þ1 ¼
L

r!e
: ð13Þ

Therefore, from Lemma 1 and (13), the optimal number
of slots spent by BTSA algorithm to identify n tags is

T �BTSAðnÞ ¼ TBTSAðL; nÞjL¼n;L!þ1

� Lþ L
Xn
r¼2

TBinTreeðrÞ
r!e

� 2:33n:
ð14Þ

tu
Theorem 2. The optimal efficiency of BTSA algorithm is

P �BTSA � 0:429: ð15Þ

Proof. From Theorem 1 and Definition 2, we have

P �BTSA �
n

2:33n
� 0:429:

Therefore, Theorem 2 can be given. tu

5.2 Comparison with TSA Algorithm’s Efficiency

TSA algorithm also integrates tree algorithm into ALOHA
algorithm. In TSA algorithm, if tags collide in a slot, the
collided tags will be L-ary splitting, where L is the
number of the collided tags in the slot. In [11], [12], [13],
computer results show that TSA algorithm has better
efficiency performance than other pure ALOHA-based
algorithms, such as Dynamic FSA and Q algorithm
protocol. Since L is unknown to a reader, however, TSA
algorithm requires the estimation of the number of tags.
On the other hand, instead of L-ary splitting, BTSA
algorithm adopts binary splitting if tags collide in a slot.
In fact, if we guarantee that an initial frame is close to the
number of tags, BTSA algorithm will not achieve lower
efficiency than TSA algorithm. In this case, the estimation
of the number of tags can be avoided, and hence the
computational cost of the estimation can also be avoided.
This section will further analyze BTSA algorithm’s
efficiency by comparing it with TSA algorithm.

Similar to conventional ALOHA-based algorithms, TSA
algorithm randomly assigns tags to some slots. In TSA, if
tags collide in the jth slot of the ith level frame, the collided
tags in the jth slot will be reassigned to the next level frame
consisting of Ljiþ1 slots [11]. When Ljiþ1 always satisfy

Ljiþ1 ¼ N
j
i ð16Þ

for any i and j, where Nj
i denotes the number of colliding

tags in the jth collision slot of the ith level frame, TSA
algorithm identifying n tags will expend the least slots
number of 2:30n [11]. In this case, TSA algorithm’s
efficiency is an optimal efficiency of 1=2:30 ¼ 0:435. How-
ever, since a reader is generally difficult to know the exact
number of tags in a collision slot, TSA algorithm actually set

WU ET AL.: BINARY TREE SLOTTED ALOHA FOR PASSIVE RFID TAG ANTICOLLISION 25

the frame length by the following method. Given ni tags
assigned to the ith level frame where c1;i successful slots
and ck;i collision slots are produced, collided tags in each
collision slot of the ith level frame will be reassigned to a
frame with Liþ1 slots. The value of Liþ1 is identical for all
collision slots in the ith level frame, and is given by [11]

Liþ1 ¼
ni � c1;i

ck;i

� �
: ð17Þ

From (17), we can see that Liþ1 may be not exactly equal to
the number of collided tags in a collision slot since ðni �
c1;iÞ=ck;i is only an average value of the number of colliding
tags in a collision slot of the ith level frame. Therefore, the
actual optimal efficiency of TSA algorithm for (17) may be
lower than the ideal optimal efficiency for (16), 0.435. Next,
we will derive the actual TSA algorithm efficiency to
compare it with BTSA algorithm’s efficiency.

Lemma 2. The optimal number of slots expended by TSA

algorithm to identify n tags is

T �TSAðnÞ � 2:33n: ð18Þ

Proof. Substituting (7) into (18), we have

E
n0 � c1;0

ck;0

� �
jL0¼n0;L0!1 ¼

e� 1

e� 2
� 2:39: ð19Þ

Thus,

EðL1ÞjL0¼n0;L0!1 ¼ 2:39b c ¼ 2: ð20Þ

From (20), the optimal slots number expended by TSA
algorithm to identify n tags is

T �TSAðnÞ ¼ TTSAðL0; n0ÞjL0¼n0;L0!þ1

� L0 þ L0

Xn
r¼2

TTSAð2; rÞ
r!e

;
ð21Þ

where TTSAðL0; n0Þ denotes the number of slots ex-
pended by TSA algorithm, given n0 tags and an initial
frame length L0. TTSAð2; rÞ can be given by

TTSAð2; rÞ ¼ 2þ
Xr
i¼2

r
i

� �
0:5r�1TTSAði; iÞ: ð22Þ

For TTSAði; iÞ, we can use a recursive method to obtain it.
When n ¼ 2,

TTSAð2; 2Þ ¼ 2þ Eð2; c2ÞTTSAð2; 2Þ: ð23Þ

Substituting (7) into (23) will produce

TTSAði; iÞ ¼ 4; i ¼ 2: ð24Þ

When i > 2,

TTSAði; iÞ ¼ iþ Eði; ciÞTTSAði; iÞ

þ
Xi�1

j¼2

Eði; cjÞTTSAðj; jÞ:
ð25Þ

Likewise, substituting (7) into (25) can produce

TTSAði; iÞ ¼
iþ
Pi�1

j¼2 ðirÞð1iÞ
j�1ð1� 1iÞi�jTTSAðr; rÞ

1� ð1iÞ
i�1

; i > 2

ð26Þ

Substituting (22), (24), and (26) into (21), (18) can be
yielded. tu

Theorem 3. The optimal efficiency of TSA algorithm is not
higher than that of BTSA algorithm, i.e.,

P �TSA � P �BTSA: ð27Þ

Proof. From Theorem 1 and Lemma 2, the optimal slot
number of BTSA algorithm is nearly equal to that of TSA
algorithm. To obtain Liþ1, however, TSA algorithm
should first estimate the number of tags assigned to the
ith level frame, ni in (17) because ni is generally unknown
to a reader. Due to estimation error, actual TSA
algorithm’s efficiency will not be higher than theoretical
value of 1=2:33 ¼ 0:429. Therefore, (27) is yielded. tu

Theorem 3 signifies that, if we guarantee that an initial
frame length is close to the number of tags, it is not
necessary to resolve collided tags in a collision slot by L-ary
splitting where L is the estimated number of the colliding
tags because the efficiency in L-ary splitting will not be
larger than that in binary splitting. This can avoid
estimating L and hence also avoid computational cost of
the estimation. In the proposed protocols, we adopt a
dynamic, an adaptive, and a splitting method to make the
frame length be close to the number of tags, respectively.
Next, we will analysis the performance of the proposed
protocols.

5.3 Analysis of the Proposed BTSA Protocol

It is seen from (12) that BTSA algorithm’s efficiency is a
function about an initial frame length L and the number of
tags n. Also, from Fig. 2, we can see that, the efficiency is
much related to the initial frame length. Only when the
initial frame length is closed to the number of tags, a higher
efficiency value can be obtained. Since the three proposed
BTSA protocols do not adopt linear methods to adjust the
initial frame length, it is some difficult to directly derive
the efficiency. Therefore, we will approximately analyze
the three protocols efficiency from aspect of the adjusted
initial frame length.

In dynamic BTSA protocol, a reader adjusts the initial
frame length by judging whether the first slot is idle or
collisional and then adopts BTSA algorithm. Thus, we can
analyze the efficiency from the relation of the adjusted
frame length and the number of tags. We define distance

between the adjusted initial frame length L̂ and the number
of tags n as

distance ¼ n� L̂
n

�����
������ 100%: ð28Þ

Fig. 12 gives simulation results for distance of dynamic
BTSA protocol. From Fig. 12, dynamic BTSA protocol’s
distance is about 40 percent. That is, L̂ ¼ 1:4n or L̂ ¼ 0:6n.

26 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 24, NO. 1, JANUARY 2013

Substituting them into (12), we can approximately have
that, dynamic BTSA protocol’s efficiency is 0.40.

In adaptive BTSA protocol, we use average frame length
to express the relation of the initial frame length and the
number of tags. In an ALOHA protocol, suppose that the
initial frame length and the number of tags satisfy L ¼ �n
and then the efficiency can be given by

P ¼ lim
L!þ1

n

L
1� 1

L

� �n�1

¼ e
�1=�

�
: ð29Þ

Since a part of frame length adjustment in adaptive BTSA
protocol is the same as Q algorithm, we approximately
substitute an average frame length in Q algorithm for that
in adaptive BTSA protocol. Authors in [19], [20], [21] show
that Q algorithm’s efficiency is about 0.34. Substituting 0.34
into (29), we can obtain � ¼ 0:69 or 1.52. Substituting them
into (28), we know that adaptive BTSA protocol’s distance
between the average frame length and the number of tags is
about 31-52 percent. Therefore, it is concluded that adaptive
BTSA protocol’s efficiency may be close to dynamic BTSA
protocol, 0.40.

In splitting BTSA protocol, left tag sets produced in
previous splitting process will be repeatedly split. Since an
initial frame length in BTSA algorithm on a right tag set is
given by the value of the number of tags in a left set on the
same level, we define

distance0 ¼ nLeft� nRight
nRight

����
����� 100%: ð30Þ

Fig. 13 shows that simulation results for distance0 between a
left tag set and a right tag set in splitting BTSA protocol. It is

seen from Fig. 13 that, distance0 decreases with the number
of tags, and will be less than 10 percent when the number of
tags is larger than 200. According to the results, we may
conclude that, an initial frame length given by the number
of tags of a left tag set will produce a higher efficiency value
than dynamic BTSA protocol and adaptive BTSA protocol
because its distance is lower than the two protocols when
the number of tags increases. Likewise, substituting L̂ ¼
1:1n or L̂ ¼ 0:9n into (12), we have that, splitting BTSA
protocol’s efficiency is about 0.42.

6 COMPUTER SIMULATION RESULTS

We evaluate the performance of the three proposed BTSA
protocols by computer simulations. We individually per-
form each simulation 500 times, and average 500 simulation
results into the final results.

Fig. 14 presents the system efficiencies of BSTSA [13],
Modified Q [21], Q algorithm [3], [4], TSA [11], Dynamic
TSA [12], Dynamic FSA [6], [7], [8], [9], [10], dynamic BTSA,
adaptive BTSA, and splitting BTSA protocol when the
number of tags increasing from 5 to 100. Here, the system
efficiencies are slot efficiencies. More details can be seen in
Section 4 of the supplementary file, available online. In
Modified Q, Q algorithm, dynamic BTSA and adaptive
BTSA protocol, an initial value of Q selects 4.0, and step C
selects values as follows: If 0 � Q � 2, C ¼ 0:5; if Q � 10,
C ¼ 0:1; else, C ¼ 1=Q. An initial frame length in TSA
protocol selects the same value as in [11], L0 ¼ 128, and the
initial frame length in Dynamic TSA and Dynamic FSA will
also select 128. Furthermore, the estimate for the number of
tags in TSA protocol and BSTSA protocol adopts the same
method as in [11], i.e., Vogt estimate, whose number range
is an interval of c1;i þ 2ck;i to 2(c1;i þ 2ck;i).

From Fig. 14, when the number of tags increases from 20
to 100, the efficiency curves of BSTSA, Modified Q, dynamic
BTSA, adaptive BTSA, and splitting BTSA protocol are
nearly horizontal at around 0.4. The efficiencies of the six
cures range from the highest to the lowest as follows:
splitting BTSA, BSTSA, adaptive BTSA, dynamic BTSA,
Modified Q, and Q algorithm. For TSA protocol and
Dynamic TSA protocol, their efficiencies are lower than 0.2
when the number of tags is less than 30, and their efficiencies
increase with the number of tags and arrive at 0.4 when the
number of tags is 100. Dynamic FSA protocol’s efficiency is
also lower than 0.2 when the number of tags is less than 30,

WU ET AL.: BINARY TREE SLOTTED ALOHA FOR PASSIVE RFID TAG ANTICOLLISION 27

Fig. 12. Distance of adjusted frame length and the number of tags.

Fig. 13. Distance of left and right tag set in splitting BTSA protocol.

Fig. 14. Simulation results: system efficiency, 5 � n � 100.

and its efficiency increases with the number of tags and

arrive at 0.36 when the number of tags is 100. These results

show that, the variance of the number of tags will result in

much variance of efficiency for TSA, Dynamic TSA, and

Dynamic FSA, while the variance will not do for BSTSA,

Modified Q, Q algorithm, dynamic BTSA, adaptive BTSA,

and splitting BTSA protocol. In addition, the reason why

splitting BTSA’s efficiency is higher than BSTSA is the

estimation of the number of tags. Since BSTSA adopts the

estimation that will introduce error between a frame length

and the number of tags, an optimal efficiency is difficult to be

obtained. On the contrary, splitting BTSA protocol does not

adopt the estimation, and thus it does not introduce

estimation error. Splitting BTSA protocol adopts binary

splitting to make sure that an initial frame length is closer to

the number of tags. Hence, the efficiency can be closer to an

optimal efficiency. Fig. 15 presents system efficiencies for the

protocols above when the number of tags increases from 100

to 4,000, where other parameters are the same as in Fig. 14.

Simulation results of Fig. 15 are similar to those of Fig. 14.

Splitting BTSA has the highest value of efficiency, around

0.425 and its efficiency is not affected by the number of tags
increasing or decreasing. From Figs. 14 and 15, we can see

that the gap between the three proposed protocols efficien-

cies and BSTSA’s efficiency does not surpass 0.01. That is,
the proposed protocols have approximate efficiency perfor-

mance to BTSA, but require no estimation and hence avoid

the computational cost of the estimation.
Figs. 16 and 17 give number of slots for identifying all

tags when 5 � n � 100 and 100 � n � 4;000, respectively.
Similar to the results for the efficiency, splitting BTSA has

better performance on identifying slot number than the

other protocols. Also, Figs. 18, 19, 20, and 21 give the
number of idle slots and collision slots for identifying all

tags, respectively. In these figures, our proposed protocols

may not have the least number of collision slots. From
aspect of time efficiency which is defined as a ratio between

durations for successful slots and those for total slot, the

28 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 24, NO. 1, JANUARY 2013

Fig. 15. Simulation results: system efficiency, 100 � n � 4;000.

Fig. 16. Simulation results: number of total slots, 5 � n � 100.

Fig. 17. Simulation results: number of total slots, 100 � n � 4;000.

Fig. 18. Simulation results: number of idle slots, 5 � n � 100.

Fig. 19. Simulation results: number of idle slots, 100 � n � 4;000.

Fig. 20. Simulation results: number of collision slots, 5 � n � 100.

proposed protocols efficiency is likely lower than other

protocols because a nonidle slot usually has longer duration

than an idle slot [25], [26]. However, a collision slot duration

can also be shorter than a successful slot duration, and be

close to an idle slot. For example, ISO 18000-6C standard

uses a random signature sequence with fewer bits in length

than ID sequence. If a tag’s signature sequence collides with

others at a reader, the tag does not need to transmit its ID.

In this scenario, the collision slot duration is just the shorter

signature sequence duration, not the longer ID duration.

From the simulation results, the gap between our proposed

protocol’s collision slots number and other protocols with

estimation is very small. Therefore, our proposed protocols

still have approximate time efficiency to those protocols

with estimation.
Fig. 22 presents average times of estimation in a read

cycle for the protocols mentioned above. Since Q algorithm,

dynamic BTSA, adaptive BTSA, and splitting BTSA do not

require the estimation of the number of tags, the times of

the estimation in these protocols are the least. When the
number of tags is larger than 40, the times of tags estimation
in the other protocols ranges from the most to the least as
follows: Dynamic TSA, BSTSA, TSA, Dynamic FSA, and
Modified Q. Fig. 23 also presents the times of estimation for
the protocols when the number of tags increases from 100 to
4,000, and the curves ranging from the highest to the lowest
in Fig. 19 are similar to those in Fig. 17.

Figs. 24 and 25 give the proposed protocol’s comparison
with some commercialized solutions for anticollision: Texas
Instrument company’s tree walking [27], Philips company’s
I Code [7], and TagSys Company’s STAC [2]. Tree walking
is a tree-based protocol and is similar to query tree protocol,
where the reader queries tags whether any of their IDs
contain a certain prefix, and then the tags can be split into
two sets. In tree walking, we assume that each tag has a 96-
bit ID. Although tree walking protocol requires no estima-
tion, its efficiency is lower than the proposed protocols, and
could only achieve an efficiency value of about 0.35. I Code
is a framed slotted ALOHA protocol. In I Code, since all
tags will resend their data on a second request regardless of
whether they are previously successful in sending their
message, some tags may be never recognized. For this
reason, Vogt [7] improves I code protocol and change it into
a dynamic frame length protocol. Here, the I Code solution
refers to Vogt scheme. In the I code, i.e., Vogt scheme, only
when the initial frame length is equal to the number of tags,
the efficiency will achieve a maximum value, 0.37, which is,
moreover, lower than our proposed protocols. That is, the I
Code protocol may not be robust from small number to
large one. In addition, the I Code needs to adjust a frame

WU ET AL.: BINARY TREE SLOTTED ALOHA FOR PASSIVE RFID TAG ANTICOLLISION 29

Fig. 21. Simulation results: number of collision slots, 100 � n � 4;000.

Fig. 22. Simulation results: times of estimation, 5 � n � 100.

Fig. 23. Simulation results: times of estimation, 100 � n � 4;000.

Fig. 24. Simulation results: comparison with commercialized solutions,
5 � n � 100.

Fig. 25. Simulation results: comparison with commercialized solutions,
100 � n � 4;000.

length according to the number of tags. Thus, it also
requires the estimation of the number of tags and increases
the computational cost. STAC is a fixed frame length
ALOHA protocol and requires no estimation. Instead of
dynamically being adjusted, however, each frame length in
STAC is fixed. Thus, the efficiency of STAC is much lower
than our proposed protocols.

Figs. 26 and 27 present the efficiency of dynamic BTSA
protocol under different initial values of Q when the
number of tags increases from 5 to 100 and from 100 to
4,000, respectively. When the number of tags 5 � n � 100,
the system efficiency under Q � 8 does not arrive at 0.4;
only when n > 100, the efficiency will surpass 0.4. The
system efficiency under Q � 2 can arrive at about 0.4 when
n < 100; however, the efficiency will be lower than 0.4
when n > 100. Therefore, it is seen from the results that,
the initial value of Q, 4.0 is a compromise, which makes
the efficiency have a higher value both when the number
of tags increases and decreases. Figs. 28 and 29 present the
system efficiencies of adaptive BTSA protocol under
different initial values of Q when the number of tags
increases from 5 to 100 and from 100 to 4,000, respectively.
From the two figures, if the initial value of Q selects 4.0,
the efficiencies will also have a higher value both when the
number of tags increases and decreases.

7 CONCLUSION

When an RFID system identifies multiple tags, tag collisions
will happen. The RFID system generally applies a tag
anticollision protocol to resolve the multitag collisions. This

paper utilizes BTSA algorithm to propose three protocols:

dynamic BTSA protocol, adaptive BTSA protocol, and
splitting BTSA protocol. The proposed protocols not only

have higher efficiency but also require no estimation of the

number of tags, and hence can avoid the computational cost
of the estimation. Furthermore, since the proposed proto-

cols always can adjust a frame to a reasonable length for the

number of tags, their efficiency will not be affected by the
variance of the number of tags. When the number of tags

suddenly increases or decreases much, the underutilization

of channel and low efficiency will not happen.

ACKNOWLEDGMENTS

This work was supported in part by Applied and Basic
Research Foundation of Yunnan Province under Grant No.

2011FB083, the Scientific Research Foundation of Yunnan

Provincial Department of Education under Grant No.
2011Y217, the Open Foundation of Key Laboratory of

Wireless Sensor Network Technology of Yunnan Province

under Grant No. ZK2011001, the Major Special Project of
Scientific Research Foundation of Yunnan Provincial De-

partment of Education under Grant No. ZD2011009, and a

grant from Innovative Research Team in Yunnan University
of Nationalities.

REFERENCES

[1] E. Welbourne, L. Battle, G. Cole, K. Gould, K. Rector, S. Raymer,
M. Balazinska, and G. Borriello, “Building the Internet of Things
Using RFID: The RFID Ecosystem Experience,” IEEE Internet
Computing, vol. 13, no. 3, pp. 48-55, May/June 2009.

30 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 24, NO. 1, JANUARY 2013

Fig. 26. Simulation results: dynamic BTSA efficiency under different Q,
5 � n � 100.

Fig. 27. Simulation results: dynamic BTSA efficiency under different Q,
100 � n � 4;000.

Fig. 28. Simulation results: adaptive BTSA efficiency under different Q,
100 � n � 4;000.

Fig. 29. Simulation results: adaptive BTSA efficiency under different Q,
5 � n � 4;000.

[2] “13.56 MHz ISM Band Class 1 Radio Frequency Identification Tag
Interface Specification: Recommended Standard,” technical
report, Version 1.0.0, Auto-ID Center, 2003.

[3] Information Technology - Radio Frequency Identification (RFID) for
Item Management - Part 6: Parameters for Air Interface Communica-
tions at 860 MHz to 960 MHz, Int’l Standard ISO/IEC 18000-6, 2004.

[4] Information Technology - Radio Frequency Identification (RFID) for
Item Management Part 6: Parameters for Air Interface Communications
at 860 MHz to 960 MHz, Amendment1: Extension with Type C and
Update of Types A and B, Int’l Standard ISO/IEC 18000-6, 2006.

[5] EPC Radio-Frequency Identification Protocols Class-1 Generation-2
UHF RFID Protocol for Communications at 860 MHz-960 MHz,
Version 1.1.0 Draft1. EPCglobal, Inc, 2005.

[6] F.C. Schoute, “Dynamic Frame Length Aloha,” IEEE Trans. Comm.,
vol. C-31, no. 4, pp. 565-568, Apr. 1983.

[7] H. Vogt, “Efficient Object Identification with Passive RFID Tags,”
Proc. Int’l Conf. Pervasive Computing, pp. 98-113, 2002.

[8] S.R. Lee, S.D. Joo, and C.W. Lee, “An Enhanced Dynamic Framed
ALOHA Algorithm for RFID Tag Identification,” Proc. Int’l Conf.
Mobile and Ubiquitous Systems: Networking and Services, pp. 1-5,
2005.

[9] W.T. Chen, “An Accurate Tag Estimate Method for Improving the
Performance of an RFID Anticollision Algorithm Based on
Dynamic Frame Length ALOHA,” IEEE Trans. Automation Science
and Eng., vol. 6, no. 1, pp. 9-15, Jan. 2009.

[10] H. Wu and Y. Zeng, “Bayesian Tag Estimate and Optimal Frame
Length for Anti-Collision ALOHA RFID System,” IEEE Trans.
Automation Science and Eng., vol. 7, no. 4, pp. 963-969, Oct. 2010.

[11] M.A. Bonuccelli, F. Lonetti, and F. Martelli, “Tree Slotted ALOHA:
A New Protocol for Tag Identification in RFID Networks,” Proc.
Int’l Symp. World of Wireless, Mobile and Multimedia Networks, pp. 1-
6, 2006.

[12] G. Maselli, C. Petrioli, and C. Vicari, “Dynamic Tag Estimation for
Optimizing Tree Slotted ALOHA in RFID Networks,” Proc. ACM
11th Int’l Symp. Modeling, Analysis and Simulation of Wireless and
Mobile Systems (MSWIM ’08), pp. 315-322, 2008.

[13] L.T. Porta, G. Maselli, and C. Petrioli, “Anti-Collision Protocols for
Single-Reader RFID Systems: Temporal Analysis and Optimiza-
tion,” IEEE Trans. Mobile Computing, vol. 10, no. 2, pp. 267-279,
Feb. 2011.

[14] J.I. Capetanakis, “Tree Algorithms for Packet Broadcast Chan-
nels,” IEEE Trans. Information Theory, vol. IT-25, no. 5, pp. 505-515,
Sept. 1979.

[15] D.R. Hush and C. Wood, “Analysis of Tree Algorithm for RFID
Arbitration,” Proc. IEEE Int’l Symp. Information Theory, pp. 107-107,
1998.

[16] M. Kodialam and T. Nandagopal, “Fast and Reliable Estimation
Schemes in RFID Systems,” Proc. 12th ACM Ann. Int’l Conf. Mobile
Computing and Networking Table of Contents, pp. 322-333, 2006.

[17] H. Wu and Y. Zeng, “Efficient Framed Slotted ALOHA Protocol
for RFID Tag Anticollision,” IEEE Trans. Automation Science and
Eng., vol. 8, no. 3, pp. 581-588, July 2011.

[18] Y. Maguire and R. Pappu, “An Optimal Q-Algorithm for the ISO
18000-6C RFID Protocol,” IEEE Trans. Automation Science and Eng.,
vol. 6, no. 1, pp. 16-24, Jan. 2009.

[19] D. Lee, K. Kim, and W. Lee, “Q+-Algorithm: An Enhanced RFID
Tag Collision Arbitration Algorithm,” Proc. Conf. Ubiquitous
Intelligence and Computing (UIC ’07), pp. 1-10, 2007.

[20] I. Joe and J. Lee, “A Novel Anti-Collision Algorithm with Optimal
Frame Size for RFID System,” Proc. Fifth ACIS Int’l Conf. Software
Eng. Research, Management & Applications, pp. 424-428, 2007.

[21] Y. Cui and Y. Zhao, “A Modified Q-Parameter Anti-Collision
Scheme for RFID Systems,” Proc. Int’l Conf. Ultra Model Telecomm.
and Workshop (ICUMT ’09), pp. 1-4, 2009.

[22] J. Myung, W. Lee, J. Srivastava, and T.K. Shih, “Tag-Splitting:
Adaptive Collision Arbitration Protocols for RFID Tag Identifica-
tion,” IEEE Trans. Parallel and Distributed Systems, vol. 18, no. 6,
pp. 763-775, June 2007.

[23] J. Park, M.Y. Chung, and T.J. Lee, “Identification of RFID Tags in
Framed-Slotted ALOHA with Robust Estimation and Binary
Selection,” IEEE Comm. Letters, vol. 11, no. 5, pp. 452-454, May
2007.

[24] C. Qian, Y. Liu, H. Ngan, and L.M. Ni, “ASAP: Scalable
Identification and Counting for Contactless RFID Systems,” Proc.
IEEE Int’l Conf. Distributed Computing Systems (ICDCS ’10), pp. 52-
61, 2010.

[25] T. Li, S. Wu, S. Chen, and M. Yang, “Energy Efficient Algorithms
for the RFID Estimation Problem” Proc. IEEE INFOCOM, 2010.

[26] H. Han, B. Sheng, C.C. Tan, Q. Li, W. Mao, and S. Lu, “Counting
RFID Tags Efficiently and Anonymously,” Proc. IEEE INFOCOM,
2010.

[27] A. Juels, R.L. Rivest, and M. Szydlo, “The Blocker Tag: Selective
Blocking of RFID Tags for Consumer Privacy,” Proc. ACM Conf.
Computer and Comm. Security (CCS ’03), pp. 1-9, 2003.

[28] C. Qian, H. Ngan, and Y. Liu, “Cardinality Estimation for Large-
Scale RFID Systems,” Proc. Sixth IEEE Int’l Conf. Pervasive
Computing and Communications (ICPCC ’08), pp. 30-39, 2008.

[29] Y. Zheng, M. Li, and C. Qian, “PET: Probabilistic Estimating Tree
for Large-Scale RFID Estimation,” Proc. 31st IEEE Int’l Conf.
Distributed Computing Systems (ICDCS), pp. 37-46, 2011.

[30] D. Simplot-Ryl, I. Stojmenovic, A. Micic, and A. Nayak, “A Hybrid
Randomized Protocol for RFID Tag Identification,” Sensor Rev.,
vol. 26, no. 2, pp. 147-154, 2006.

Haifeng Wu received the MS degree in elec-
trical engineering from Yunnan University,
Kunming, China, in 2004, and the PhD degree
in electrical engineering from Sun Yat-Sen
University, Guangzhou, China, in 2007. He is
currently an assistant professor at the Depart-
ment of Information Engineering, Yunnan Uni-
versity of Nationalities. Prior to that, he was a
postdoctoral scholar in the Kunchuan Institute of
Technology from 2007 to 2009. His research

interests include RF engineering, mobile communications and coopera-
tive sensor networks.

Yu Zeng received the MS degree in electrical
engineering from Yunnan University, Kunming,
China, in 2006. She is currently an assistant
professor at the Department of Information
Engineering at the Yunnan University of Nation-
alities. Prior to that, she was an electrical
engineer in Kunming Institute of Physics from
2006 to 2009. Her research interests include
wireless network, mobile communications.

Jihua Feng received the MS degree in electrical
engineering from Yunnan University, Kunming,
China, in 2006, and the PhD degree in electrical
engineering from Sun Yat-Sen University,
Guangzhou, China, in 2010. He is currently an
assistant professor at the Department of Infor-
mation Engineering, Yunnan University of Na-
tionalities. His research interests include
adaptive signal processing and RF engineering.

Yu Gu received the MS degree in basic
mathematics from Yunnan Normal University,
China, in 2003, and the PhD degrees in
computer science and engineering from Xi’an
Jiaotong University, in 2009, respectively. He is
now a professor at the School of Education,
Yunnan University of Nationalities. His research
interests include wireless sensor network, peer-
to-peer computing, and pervasive computing.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

WU ET AL.: BINARY TREE SLOTTED ALOHA FOR PASSIVE RFID TAG ANTICOLLISION 31

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 36
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 36
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 36
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU (IEEE Settings with Allen Press Trim size)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [567.000 774.000]
>> setpagedevice

