
Vol.:(0123456789)1 3

International Journal of Machine Learning and Cybernetics 
https://doi.org/10.1007/s13042-021-01501-7

ORIGINAL ARTICLE

3D transfer learning network for classification of Alzheimer’s disease 
with MRI

Haifeng Wu1   · Jinling Luo1 · Xiaoling Lu1 · Yu Zeng1

Received: 29 October 2020 / Accepted: 22 December 2021 
© The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022

Abstract
Background  As a kind of dementia, Alzheimer’s disease (AD) cannot be cured once diagnosed. Hence, it is very important 
to diagnose early and delay the deterioration of the disease through drugs.
Objective  To reduce the computational complexity of conventional 3D convolutional networks, this paper uses machine 
learning as an auxiliary diagnosis of AD, and proposes three-dimensional (3D) transfer network which is based on two-
dimensional (2D) transfer network to classify AD and normal groups with magnetic resonance imaging (MRI).
Method  First, the method uses a 2D transfer Mobilenet to extract features from 2D slices of MRI, and further perform 
dimension reduction for the extracted features. Then, all of the 2D slice features of one subject are merged to classify.
Results  The experiment in this paper uses an open access Alzheimer's disease database to evaluate the method. The experi-
ment result show that the classification accuracy of the proposed 3D network is better than that of the existing 2D transfer 
network, increased by about 10 percentage points and the classification time is only about 1/4 of the existing one.
Conclusion  The proposed method is to realize the classification of 3D MRI data through an existing 2D transfer network, 
and it not only reduces the complexity of conventional 3D networks, but also improves the classification accuracy. Because 
of the shared weight of the transfer network, besides, the classification time is reduced.
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1  Introduction

The symptoms of Alzheimer's disease (AD) are impaired 
cognition, weakened memory, and decreased ability to 
speak, understand, and learn. In severe cases, life can not 
take care of itself. As one of the most common dementia, 
AD is a disease that eventually causes death. At present, its 
cause has not been fully understood and no treatment has 
been found. Once the disease is diagnosed, it can only be 
delayed by drugs and cannot be reversed. Some mild AD 

will deteriorate rapidly, but some will remain stable (Thies 
and Bleiler 2013). This also provides an opportunity for its 
treatment. Therefore, it is important to diagnose AD as soon 
as possible.

Cognitive function tests are a commonly used manual 
diagnosis method, such as mini-mental state examination 
(Arevalo‐Rodriguez et al. 2015), Hasegawa dementia scale 
(Kim et al. 2005) and neuropsychological test battery (Har-
rison et al. 2007), etc. Although the tests are highly targeted 
and comprehensive in evaluation, they are greatly affected 
by the patient's own, such as cultural level, language expres-
sion and understanding. Moreover, early AD symptoms are 
similar to many mental diseases and thus it is easy to cause 
confusion and a high rate of misdiagnosis. Therefore, the 
cognitive tests are mostly used for preliminary screening 
of AD. Using medical imaging technology to manually 
diagnose AD is also a commonly used diagnostic method 
(Johnson et al. 2012), such as computer tomography (CT), 
positron emission tomography (PET), magnetic resonance 
imaging (MRI) and other technologies. A doctor depends 
on his professional knowledge and experience to analyze 
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the patient's brain image and make a diagnosis based on 
the patient's symptoms. However, this diagnostic method 
requires a doctor to carefully observe the patient's brain 
imaging and takes too much time. Thus, the method is not 
high-efficiency.

In recent years, with the rapid development of machine 
learning technology, people have found that machine learn-
ing can be used as a rapid auxiliary diagnostic method. 
Machine learning can diagnose AD through biomarkers, 
such as extracting cerebrospinal fluid by puncture (Blen-
now et al. 2003). However, the method is invasive diagnosis 
and will inevitably cause some harm to the patient's body. 
CT imaging can also be used for machine learning diagnosis 
(Gao et al. 2017). It will obtain patient axis, coronal and sag-
ittal images and thus provides complete three-dimensional 
information. However, the radiation of CT can also cause 
damage to human tissue. MRI imaging has the advantages 
of no radiation, high resolution and low interference, and its 
use in AD patients can effectively detect the atrophy of some 
brain structures such as hippocampus, amygdala, entorhi-
nal cortex, and cingulate gyrus (Aël Chetelat et al. 2003; 
Frisoni et al. 2010). The structures are key features of AD. 
Thus, MRI has been widely used in the diagnosis of AD 
for machine learning. Support vector machine (SVM) (Orru 
et al. 2012; Dessouky et al. 2013) is more widely used in 
AD diagnosis of machine learning. It can be used not only 
for linear data, but also for nonlinear data. However, the 
accuracy of traditional MRI machine learning classification 
like SVM depends on the extracted features, and most of 
the features also need to be manually extracted. Sometimes 
feature extraction is more difficult. If the extracted features 
themselves are not correct, the classification accuracy will 
not be very high. Therefore, for image classification, such as 
AD images whose features are still controversial, there are 
often some uncertainties.

Compared with the traditional machine learning, MRI 
diagnosis of deep learning (Farooq et al. 2017; Basaia et al. 
2019) often has the ability of self-learning features extrac-
tion. For example, a convolution neural network (CNN) 
change original MRI data into low-level features through 
a nonlinear model, and then forms high-level features 
through multiple fully connected layers. Thus, the classifi-
cation objects will have more specific and effective expres-
sion of the features. Since MRI is a 3D image, some 3D 
CNN (Feng et al. 2019; Yagis et al. 2020) have to be built 
to classify MRI images. Due to the complex structure of 3D 
CNN, they has many tedious parameter tuning and thus a 
large amount of computation and high complexity. Besides, 
CNN networks generally require a large amount of training 
data for higher classification accuracy, which also produce a 
huge amount of calculation. Especially for AD MRI images 
in a medical field, it is difficult to ensure a high classifica-
tion accuracy for deep learning due to limited open-access 

image data. Transfer learning (Glozman et al. 2016; Hon 
et al. 2017) is to transfer a pre-trained deep network to a 
target problem, where only the top layer of the pre-trained 
network needs to be changed. Therefore, the tuned param-
eters are greatly reduced and time is saved. More impor-
tantly, transfer learning only needs a small amount of data 
to get a good classification performance. Because of the 
advantages of transfer learning, some 3D transfer CNNs 
like (Hosseini-Asl et al. 2016) is used in AD diagnosis of 
MRI. Unfortunately, the 3D networks do not have network 
weight data available for download, which means the net-
work needs to be trained from scratch. AlexNet (Glozman 
et al. 2016) and VGG16 (Hon et al. 2017; Mehmood et al. 
2021; Kumar et al. 2021; Jain et al. 2019) as transferable 
networks, they are used to extract features from gray mat-
ter tissue extracted from brain images or brain sMRI slices, 
etc., and they achieve better results in the classification of 
AD, CN, and MCI. The classification accuracy rate finally 
realizes the early diagnosis of Alzheimer's disease, which 
overcomes the problem that deep learning algorithms require 
a large number of labeled data sets for training. It also shows 
the effectiveness of the AlexNet and VGG16 network ini-
tialization weights obtained by training on the ImageNet 
data set in AD diagnosis, AlexNet and VGG16 models can 
still extract useful features from sMRI images. High-dimen-
sional deep neural network models such as VGG19 (Abed 
et al. 2020), InceptionV3 (Abed et al. 2020; Tufail et al. 
2020), ResNet50 (Abed et al. 2020) and Xception (Tufail 
et al. 2020) are transferred to the classification of patients 
with AD, CN and MCI. The studies are able to obtain better 
classification accuracy in a short time, and show that transfer 
learning methods are even better than non-transfer learning 
methods. The DenseNet (Ashraf et al. 2021) network and 12 
other different types of pre-trained CNN models are trans-
ferred to classify Alzheimer's disease. The DenseNet net-
work shows better performance in accuracy. Currently, the 
weight data of some 2D transfer networks are open access. 
To adapt to 3D data, however, MRI has to be sliced into 2D 
images as the input of the 2D transfer networks, such as 
AlexNet (Glozman et al. 2016) and Vgg16 (Hon et al. 2017) 
applied to AD MRI diagnosis. Although the slicing method 
makes the dimension of 3D MRI and that of 2D network 
matched, slices will inevitably bring information loss and 
affect the accuracy of classification.

For the above problems, this paper proposes a novel 3D 
transfer network utilizing a 2D transfer CNN. It can real-
ize the classification for an AD and a normal control (NC) 
groups of MRI. We do not consider the type of Alzheimer's 
disease. The utilized 2D transfer CNN chooses Mobilenet 
(Howard et al. 2017) which is a lightweight network owing 
to its separable convolution. The advantage of the pro-
posed 3D transfer CNN is its lower computational com-
plexity. The reason is not only that its weight data can be 
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open downloaded, but also that it adopts the structure of 
a bottleneck layer, a dimension-reduction and a classifica-
tion layer, where the weights are shared for the MRI slices. 
The third one merges the features of the slices into one sub-
ject. Weight sharing means that the weights of all slices is 
shared. Even if the slices increases, the number of weights 
will not increase, thus reducing the complexity of the model 
and reducing training and classification time. In this way, 
as many slices as possible can ensure less information loss 
and higher classification accuracy. In experiments, we use 
an open access series of imaging studies (OASIS) database 
(Marcus et al. 2007) to evaluate the proposed method. The 
experiment results show that compared with the existing 2D 
transfer network, although the proposed 3D transfer network 
increases the input image slices, the training and classifying 
time does not increase and the classification accuracy is also 
improved.

2 � Related transfer network

The essence of AD diagnosis with MRI is to classify differ-
ent images, and the deep learning for the image classifica-
tion usually requires a huge data set for training to obtain 
high classification accuracy. However, the symptoms of AD 
are not single, and their forms at different stages are also 
different. This leads to differences in MRI images. There-
fore, in order to improve the accuracy of AD diagnosis, it is 
necessary to use large data sets of different symptoms and 
different stages of AD as much as possible. At present, some 
of the larger AD databases in the world, such as OASIS 
(Marcus et al. 2007), Alzheimer’s Disease Neuroimaging 
Initiative (ADNI) (Petersen et al. 2010) and CAD Dementia 
(Bron et al. 2015), are available. Nevertheless, the type and 
amount of the data are still insufficient to support the high 
amount of data for deep learning training.

Transfer learning is a better image classification for small 
data sets. Even when a large training data set is not avail-
able, it may also obtain a higher accuracy (Chollet 2015). 
Therefore, this paper focuses more on the AD diagnosis 
of transfer learning. In addition, compared with PET and 
CT technology, because of MRI with lower radiation and 
without contrast agent, it is less harmful to humans. For 
the reason, this paper mainly uses MRI to study AD clas-
sification. Earlier transfer learning used in MRI AD diagno-
sis is a 3D CNN method (Hosseini-Asl et al. 2016), where 
convolutional layers are at lower layers of the network and 
fully connected layers at higher layers. The 3D CNN can be 
trained and verified on the CAD Dementia dataset, and also 
can be transferred to the ADNI dataset (Petersen et al. 2010). 
The method would obtain a high classification accuracy, but 
3D convolution is used and thus the number of weights is 
huge. Its pre-training weights are not available for download 

although the network files can be open-access. This results 
in excessive training time and become a factor restricting its 
further application.

For too many weights and long training time of the 3D 
transfer learning, several 2D transfer networks are proposed 
for AD diagnosis. A 2D network uses AlexNet as a pre-
training network (Glozman et al. 2016), which slices the 
MRI image by position, selects several slices in the middle 
position as an input, and then utilizes a top-layer network 
to perform the final classification. Since the method slices 
the 3D MRI image into 2D images, it solves the dimen-
sional match of the 3D image to the 2D network. Unfortu-
nately, similar to the 3D CNN transfer network above, the 
method does not provide the pre-trained network weights 
downloaded. Another 2D transfer network uses Vgg16 as a 
pre-training network (Hon et al. 2017). The 2D network still 
need to slice the MRI image, but it selects several slices by 
the largest information entropy for classification, instead of 
slices by position. The biggest advantage of the method is 
that the weights of the pre-training network can be publicly 
downloaded, which can reduce the time on pre-training net-
work. In its cross-validation, however, it randomly allocates 
the slices from subjects to a train and a test set. That is, some 
slices of the train and the test set may belong to the same 
subject. Therefore, although this method has a high classifi-
cation accuracy, it is difficult in applications.

3 � Problem for MRI slices

Due to the limited open-access AD MRI data, this paper 
will use a transfer CNN for a small data set to complete 
AD classification. Furthermore, since many 2D transfer net-
work's weights could be available for download, this paper 
will utilize the 2D transfer networks to complete the final 
3D MRI classification.

As a high-definition imaging technology, MRI is a 3D 
image showing a brain structure, i.e. a 3D image with 
NX × NY × NZ , where NX,NY  and NZ represent the three 
dimensions of the brain, respectively. To let the 3D image 
used as input for a 2D network, MRI needs to be sliced into 
N1 two-dimensional image of N2 × N3 , where Ni , i = 1, 2 or 3 
can be any one of NX , NY and NZ , so that coronal, sagittal, or 
axial slices can be obtained. Then, the N1 2D slices are input 
to the 2D transfer network. In theory, a larger N1 will be bet-
ter because the information loss will be less. However, the 
weights in a deep network will become large if the images 
are too many. Taking a CNN network as an example, it has 
NC convolutional layers in total, where each convolutional 
layer is composed of L1 , L2 , … LN feature matrices, the size 
of the feature matrices is F1 × F1 , F2 × F2 , … FN × FN , and 
the size of the used convolution kernel is M1 ×M1 , M2 ×M2 , 
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… MN ×MN , respectively. If the network’s stride is 1, then 
the total weight is

where 1 is the value of a bias. It can be seen from (1) that the 
number of weights of the network is closely related to the 
number N1 of MRI image slices, and larger N1 will produce 
larger WCNN.

To reduce the number of slices, some criteria can be 
adopted. One is to sort by position. The slices closer to the 
middle of the brain will be reserved, other slices discarded 
(Glozman et al. 2016). Another one is to sort by informa-
tion entropy, and the slices with greater entropy will be 
reserved (Hon et al. 2017). However, no matter what crite-
rion is adopted, a reduction of slices will necessarily lead 
to loss of information. On the other hand, an increase of 
slices will make the network complicated and the training 
time extended, as shown in Fig. 1. Therefore, the key issue 
of this study is to find an optimal solution between the loss 
of MRI information and the complexity of the transmission 
network in order to obtain the best classification accuracy 
and training time.

4 � Proposed 3D transfer network

4.1 � Overview of proposed 3D transfer network

In this paper, we use a transfer CNN network with MRI to 
classify AD. The overview of the network is shown in Fig. 2. 
First, slice the MRI of a subject as the input to a pre-trained 
transfer network and get the bottleneck features of the slices. 
For an example of the training set, the feature dimension is 
(5120, 5, 5, 1024) . And then, input the bottleneck features to 
a dimension-reduction layer based on an auto-encoder (AE) 
network and train the layer. The dimensionality becomes 
(5120, 128) . Next, we merge the AE features of the slices 

(1)WCNN = N1

Nc
∑

i=1

Li(MiMi + 1)

into one subject, and the dimensionality is (160, 32, 128) . 
Input the merged features to a classification layer to obtain 
a classification result, and let the classification layer network 
trained. After the training is completed, the entire network 
training is completed, the whole dimensionality reduction is 
completed. In this method, the 2D transfer bottleneck net-
work is used to extract the features of 2D slices, where the 
information loss from 3 to 2D can be reduced as long as 
enough slices are generated for the 3D MRI. Throughout the 
training, the weights of the bottleneck layer, the dimension-
reduction layer are shared for all slices. Therefore, even if 
the number of slices is increased, the number of weights 
will not be increased. In addition, although the AE features 
extracted from bottleneck features are merged, the AE net-
work further reduces the dimension of the bottleneck fea-
tures. Therefore, the dimension of the features will become 
smaller, and the complexity of the classification layer will 
also be reduced.

4.2 � 3D feature extraction

An MRI signal is generally a 3D data, and cannot be directly 
used as an input to a 2D image classifier. To realize the fea-
ture extraction, we use a 2D transfer network to extract the 
features of the MRI slices and then merge them. Figure 3 
give the flow charts of the feature extraction and the net-
work training. The training has two steps, pre-training and 
target training. The pre-training step usually does not need 
to be completed on a local client. Even if the number of the 
weights of the bottleneck layer are very large, it can be com-
pleted by others in advance. Thus, the local client spends no 
time on pre-training the bottleneck layer. In order to better Fig. 1   Slice quantity for AD classification with MRI

Fig. 2   Overview of this 3D transfer network



International Journal of Machine Learning and Cybernetics	

1 3

extract bottleneck features, besides, the pre-training is often 
performed in a very huge source data set, such as ImageNet 
dataset (Deng et al. 2009) which has a large number of pic-
tures with many types, complete labels and high resolution. 
Therefore, the transfer network can deal with a small data set 
better than a CNN network without transfer, especially when 
large amounts of public AD MRI data is still not available.

The AD target training in Fig. 3 also has two sub-steps, 
the dimension-reduction layer training and classification 
layer training. The dimension-reduction layer training is 
unsupervised AE training. Its inputs are the bottleneck layer 
feature extracted by slices of the subject and its outputs are 
the encoding and decoding features, respectively. For the 
classification layer training, the slices of a subject, i.e. a 
3D slice tensor, will passes the trained AE encoder and be 
merged, and then enters the classification layer to complete 
the final training. It is noted that the dimension-reduction 
layer in Fig. 3 is similar to principal component analysis 
(PCA) (Jolliffe et al. 2016), which can reduce the dimen-
sion and find the main features of an original image. The 
dimension-reduction layer's encoding and decoding network 
weights are shared by all slices and thus the weight is only 
1/I of non-shared method. In the classification layer train-
ing, therefore, the trained weights will not be huge after 
dimension-reducing and weight-sharing. Next, we give more 
details of the extraction and training.

Let �S and DS be a 2D image vector and its label in a 
source dataset, respectively. If we pre-train a CNN network 
in the source dataset to make it satisfy

then the pre-training will be completed, where f S
top
(⋅) and 

�neck(⋅) are the top layer and bottleneck layer function of the 
pre-trained CNN network,�S

t
 and �b are the weight vectors 

of the top layer and the bottleneck layer, respectively.
After pre-trained, the network will be trained on a target 

MRI data set to complete the feature extraction of transfer 
learning. First, complete an dimension-reduction training. 
Take the i-th slice image matrix �i of a subject in the MRI 
training set as the input of the bottleneck layer �neck() of the 
transfer network and let �i = �neck(�b, �i) be the output feature 
of the corresponding bottleneck layer. If �i ≈�̂i is satisfied, 
the dimension-reduction training will be completed, where

�encode() and �decode() are the encoding and decoding functions 
of the dimension-reduction layer, �d and �e are their weight 
vectors, respectively.

Next, complete a classification layer network training. An 
3D MRI image of a subject in the training set is sliced into I 
2D images to obtain a tensor � = [�1 , �2…�I ], which is used 
as the input of the transfer network �neck() , so that � and its 
label DT satisfy

(2)DS = f S
top
{�S

t
, �neck(�b, �

S)}

(3)�̂i = �decode(�d, �i)

(4)�i = �encode(�e,�i)

(5)DT = fclass(�c,�)

Fig. 3   Flow charts of training and feature extraction for this transfer learning
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Thus, the training of the target network classification 
layer f

class
() is completed, where �c is the weight vector of 

the classification layer, and � = [�T
1
 , �T

2
…�T

I
]T is the merged 

vector.
In fact, the network in Fig. 3 only needs to train the 

dimension-reduction network and the classification network. 
Since both of them are shallow networks and the number of 
weights �e,�d and �c is not large, it can ensure that the train-
ing can be completed in a short time. In addition, the dimen-
sion-reduction feature comes from several slice images of 
a subject. As long as the number of slices is sufficient, the 
information loss of the MRI image will be small enough. 
Moreover, the weights of the dimension-reduction network 
is shared for all slices. Therefore, the number of weights 
will not increase with slices. This also ensures less network 
training time. Of course, dimension-reduction features is 
extracted from the bottleneck features. Although the weight 
�b of the bottleneck layer �neck() can be pre-trained, the 
bottleneck feature extraction will be performed via �neck() . 
Therefore, a too complex network �neck() will increase the 
computational complex of feature extraction. In this paper, 
we will choose a light-weight CNN network to complete it.

4.3 � MobileNet network

In the target training of transfer learning, we will use 
MobileNet as the bottleneck layer network �neck() . The net-
work is a lightweight CNN network since it changes a stand-
ard convolution into a depthwise convolution and a point-
wise convolution, as shown in Fig. 4. Thus, it can greatly 
reduce the computational complex. The details of its appli-
cation to MRI transfer learning are as follows.

For a slice with N1×N2 , of MRI data, supposes that its 
input channel is M , and a feature with No × N1 × N2 will be 
generated after the slice goes through a standard convolution 

layer, where No is the number of output channels. If the 
standard convolution layer has a convolution kernel with 
DK × DK ×M × No where DK is the dimension of the convo-
lution kernel, the computational complexity of the standard 
convolution, i.e. the number of multiplication is

In the depthwise convolution, each input channel applies 
a single filter, and then the computational complexity of the 
depthwise convolution is

Then applying a 1 × 1 convolution filter, we will have the 
complexity with

Thus, the computational complexity of the total separable 
convolution is

From (6–9), the ratio for the number of multiplications 
of the depthwise separable convolution to the standard con-
volution is

From (10), it can be seen that the computational com-
plexity of MobileNet can be greatly reduced, compared 
with the network of the same scale. Therefore, it is a better 
choice to adopt MobileNet as the transfer network, from the 
complexity.

4.4 � Dimension‑reduction and classification layer

In the target training, the bottleneck layer network adopts the 
transferred MobileNet and does not need to be designed, but 
the dimension-reduction and the classification layer need to 
be designed to ensure good feature extraction. The purpose 
of the dimension-reduction layer is to reduce the dimen-
sion of the bottleneck layer features and further extract the 
features. The dimension-reduction layer design is shown in 
Fig. 5 and consists of an encoder and a decoder. Both the 
encoder and decoder have NS fully connected layers. The 
purpose of the classification layer network is to merge the 
features extracted from each slice and complete the final 
classification. The design of the classification layer f

class
() 

is shown in Fig. 6, which mainly includes a flatten layer, NC 
fully connected layers, a dropout layer and an output layer. 
From Figs. 5 and 6, the number of weights in the dimension-
reduction and classification layers is

(6)DK × DK ×M × No × N1 × N2

(7)DK × DK ×M × N1 × N2

(8)M × No × N1 × N2

(9)DK × DK ×M × N1 × N2+M × No × N1 × N2

(10)

DK × DK ×M × N1 × N2+M × No × N1 × N2

DK × DK ×M × No × N1 × N2

=
1

No

+
1

D2

K

Fig. 4   An illustration for Separable convolution in Mobilenet
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where VS
n
 and VC

n
 are the number of neurons in the n-th layer 

of dimension-reduction and classification network, respec-
tively,dn is the dropout rate of neurons in the n-th of clas-
sification network, and 1 is the number of bias. Since the 
dimension-reduction weight is shared for each slice, the 
value of VS

0
 is only the bottleneck feature dimension of a 

single slice. If the number of the dimension-reduction layers 
NS is small, the first item on the right side of (11) will not 
be too large. Moreover, the extracted and merged feature 
dimension VC

0
 in the classification layer also decreases to a 

(11)

WSC = 2

NS
∑

n=1

(

VS
n−1

+ 1
)

× VS
n
+

NC
∑

n=1

(

VC
n−1

× dn−1 + 1
)

× VC
n

lower level. If the number of layers NC is smaller, the second 
item on the right side of (11) will not be too large.

It should be noted that some parameter settings in the 
dimension-reduction and the classification layer will affect 
the final classification result, such as the number of fully 
connected layers, the number of neurons in the fully con-
nected layer, and the weight dropout rate, etc. How to choose 
appropriate values of the parameters can be tested by experi-
ment. The discussion for it will be introduced in Section 
Experiment.

4.5 � Steps of algorithm

Finally, the whole training steps for this AD classification 
algorithm are given in Table 1.

5 � Experiment setup

In this experiment, the MRI data used are all from the 
OASIS database of the University of Washington Alzhei-
mer's Disease Research Center, its website is http://​www.​
oasis-​brains.​org/, and the downloaded data is OASIS-1 Data 
set. The data contains 416 male and female subjects aged 
18 to 96 years old, and all of the subjects are right-handed, 
including 100 AD subjects and 316 NC subjects. Table 2 
gives the parameters of the data. In addition, each subject 
data downloaded contains source data and pre-processed 
data. We chose the pre-processed data, which has been pro-
cessed through facial features, smoothing, correction, nor-
malization and registration (Marcus et al. 2007). Finally, 100 
AD and 100 NC data are selected, the AD group contains 70 
very mild, 28 mild and 2 moderate AD, and the NC group 
data is randomly selected from the database. We do not con-
sider the type of Alzheimer's disease in this paper.

In this experiment, we choose the following transfer 
learning methods to be evaluated. The parameters for them 
are listed in Table 3, and some details are as follows.

VGG16_entropy_img: According to the method in 
(Hon et al. 2017), 32 slices with the highest informa-
tion entropy of each subject are selected. The bottleneck 
features are extracted by VGG16, and then classified by 
the top-layer network. It should be noted that the network 
is still a 2D network because it can only classify slice 
images. In particular, in (Hon et al. 2017), several slices 
of the same subject are randomly allocated to the training 
set and the test set. Here, the slices of the training set and 
the test set of this method are divided by the subjects. 
That is, the slices of the same subject can only be allo-
cated to the training set or the verification set. It cannot 

Fig. 5   Dimension-reduction layer

Fig. 6   Classification layer

http://www.oasis-brains.org/
http://www.oasis-brains.org/
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occurs that some slices of a subject are in the training set 
and the other ones of the same subject are in the test set.
VGG16_entropy_32: According to the method in (Hon 
et  al. 2017), 32 slices with the highest information 
entropy of each subject are selected. To enable the litera-
ture (Hon et al. 2017) to achieve 3D data classification, 
we improve it as follows. Besides the slices extracted by 
Vgg16, the bottleneck feature will go through a top layer 
and get top-layer features. Finally, all of the top-level fea-
tures of each slice of the subject are merged and sent to 
the classification layer for classification.
MobileNet_axial_32: According to the method of slicing 
by position in (Glozman et al. 2016), the 32 axial slices 
closest to the center of each subject are selected. After 
the bottleneck features are extracted by MoblieNet, the 
bottleneck features are then extracted by the top-layer net-
work. Finally, all of the top-layer features of each slice are 
merged and sent to the classification layer for classifica-
tion. Similar to VGG16_entropy_32, this method can also 
realize 3D MRI data classification. The difference is that 
the transfer network here is Mobilenet.

AE_axial_32: It is the proposed method, where the slic-
ing method is the same as MobileNet_axial_32, and the 
other steps are shown in Table 1.

The main difference between MobileNet_axial_32 and 
AE_axial_32 is feature extraction. The former uses a super-
vised top layer to reduce dimensionality and extract features, 
while the latter uses an unsupervised autoencoder (AE).

All methods above use fivefold cross-validation. Ran-
domly divide the total data into 5 parts, where one is selected 
as a test set, and the others as a training set. Each part must 
be used as a test set each time and repeat the cross-validation 
5 times. It should be noted that the fivefold cross-validation 
is to divide the data by subjects. That is, all the slices of the 
same subject are in the same data set. It is avoided that that 
some slices of a subject are in a training set and the other 
slices of the same subject are in a test set. According to the 
above cross-validation, the classification accuracy of each 
classification method is the average of the five times.

This experiment also gives the results of the running time 
of each transfer method, including the time to extract bot-
tleneck features, the time to extract top-level features, the 
time to extract features from AE, the time to classify layers, 
and the total time to complete a fivefold cross-validation. 
All methods are performed on Anaconda Python2.7 under 
Ubuntu, and the transfer learning platform is Keras with 
TensorFlow as the back end. The operating hardware is a 
PC with Inter(R) Core(TM) i5-6200U (4-core) Central Pro-
cessing Unit (CPU), and no graphics processor (Graphics 
Processing Unit, GPU) is used.

Table 1   Steps of this ad 
classification algorithm Input:

A subject's MRI slice vector �T = [�T
1
, �T

2
, ...�T

I
 ] and its label DT in a training set or a test set

Output:
Dim-reduction weight �e �d and classification layer weight �c

known conditions:
Bottleneck layer �neck() and its weight �b

Pre-trained top layer �S
top
() and its weight �S

t

Dimension-reduction layer �encode() and �decode()
Classification layer f

class
()

Initial conditions:
Initial values of weights �e , �d and �c are randomly generated
Steps:
1. Bottleneck feature extraction: let �T go through the bottleneck layer �neck(�b, �i) and get bottleneck 

features;
2. Dimension-reduction training: in a training set, train the weights �e and �d via (3–4);
3. Classification layer training: In the training set, train the classification layer weight �c via (5);
4. Test: In a test set, get classification results via (5) and calculate a classification accuracy rate;
5. Repeat steps 2–4 until a higher classification accuracy obtained

Table 2   Parameters for OASIS 
MRI data in this experiment

Parameter Value

Database OASIS-1
TR 9.7 ms
TE 4.0 ms
Flip angle 10°
TI 20 ms
TD 200 ms
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6 � Experiment result

6.1 � Classification accuracy

First, Table 4 gives the classification accuracy of each 
method. In the Table, the classification accuracy of 
VGG16_entropy_image is 67.81%. Since this method 

only classifies a single slice, and does not merge the slices 
of a subject, the classification accuracy rate is low. The 
other three methods in the table merge the slices of a sub-
ject. In the three methods, the classification accuracy of 
MobileNet_axial_32 is low, only 68.75%, and the accuracy 
of the other two methods exceeds 70%. The result shows 
that the method to extract top-level features from the slices 
by position is not very accurate. The highest classification 
accuracy rate is AE_axial_32 with a classification accu-
racy of about 80.50%. Compared with the three meth-
ods of VGG16_entropy_img, VGG16_entropy_32, and 
MobileNet_axial_32, it has improved by nearly 12.69%, 
5.50%, and 11.75%, respectively. This also shows that the 
method to use AE to extract features from slices by posi-
tion has higher classification accuracy than the method 
to use top layer to extract feature from slices by entropy.

Table 3   Parameters for evaluated methods

1 Both MobileNet and VGG16 use the functions in the Keras platform with Tensorflow as the backend, https://​github.​com/​tenso​rflow/​tenso​rflow
2 The pre-trained weights is downloaded from https://​github.​com/​fchol​let/​deep-​learn​ing-​models/​rele

Parameter Value Parameter Value Parameter Value Parameter Value

VGG_entroy_img VGG16_entroy_32 MobileNet_
axial_32

AE_axial_32

Transfer Network VGG161 Transfer Network VGG161 Transfer Network MobileNet1 Transfer Network MobileNet1

Pre-training data2 ImageNet Pre-training 
library2

ImageNet Pre-training 
library2

ImageNet Pre-training 
library2

ImageNet

Number of slices 32 Number of slices 32 Number of slices 32 Number of slices 32
Image width 150 Image width 150 Image width 160 Image width 160
Image height 150 Image height 150 Image height 160 Image height 160
Batchsize 32 Batchsize 32 Alpha 1 Alpha 1
Top layer Unused Top layer Batchsize 32 Batchsize 32
Classification layer Pooling layer Global Average Top layer AE encoder
Flatten layer 1 FC layers 1 Pooling layer Global Average FC layers 2
FC layers 1 Activation relu FC layers 1 Activation relu
Activation relu Number of neurons 256 Activation relu Number of neurons 512 128
Number of neurons 256 Dropout 0.5 Number of neurons 256 Dropout 0.5
Dropout 0.5 Output activation sigmoid Dropout 0.5 Output activation sigmoid
Output activation sigmoid Classification layer Output activation sigmoid AE decoder

Flatten layer 1 Classification layer FC layers 2
FC layers 3 Flatten layer 1 Activation relu
Activation relu FC layers 3 Number of neurons 512 1024
Number of neurons 1024 1024 256 Activation relu Dropout 0.5
Dropout 0.5 Number of neurons 1024 1024 256 AE Batchsize 32
Output activation sigmoid Dropout 0.5 AE epochs 100

Output activation sigmoid Classification layer
Flatten layer 1
FC layers 2
Activation relu
Number of neurons 512 256
Dropout 0.5
Output activation sigmoid

Table 4   Classification accuracy of evaluated methods

Classification method Accuracy

VGG16_entropy_img 67.81%
VGG16_entropy_32 75.00%
MobileNet_axial_32 68.75%
AE_axial_32 80.50%

https://github.com/tensorflow/tensorflow
https://github.com/fchollet/deep-learning-models/rele
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Figure 7 is the feature map extracted from the second 
fully connected layer in the classification layer, where (a) 
and (b) are the features of the AD and NC group in the 
training set, respectively. From the figure, their patterns are 
different. For example, the values in the first 7 columns of 
row 3 in Fig. 7a are close to 0, while those in (b) are greater 
than zero. Figure (c) and (d) are the features of the AD and 
NC group in the test set, respectively. Their patterns are still 
different, but the patterns in the test set and the training set 
are similar. As shown in (a) and (c), the values in the first 
12 columns of row 5 are close to 0, and the values in this 
position in (b) and (d) are also close.

Figure 8 shows the classification accuracy curves of 
the four classification methods for five trials in the cross 
validation. From the figure, although the curve of VGG16_
entropy_img has less fluctuation, the accuracy of the five 
trials is low. For MobileNet_axial_32, its fourth trial’s 
classification accuracy is higher, but the other results are 
lower and its curve fluctuation is large. Although VGG16_
entropy_32’s curve is higher and stable, its classification 
accuracy is still lower than AE_axial_32. The curve of 

AE_axial_32 is at the top, and the classification accuracy 
of each trial is high. This also indicates that its high average 
classification accuracy is not owing to some high values in 
the trials.

Fig. 7   Features extracted from the second fully connected layer in the classification layer

Fig. 8   Classification accuracy curves for classification methods
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6.2 � Running time

Table 5 shows the time to extract the bottleneck features, 
the time to extract the top-layer/AE feature, the time to 
the classification layer, and the total time. From the table, 
MobileNet to extract the bottleneck feature takes less time 
than VGG16, and is a reduction of nearly 84%. It can be 
seen that, the depthwise separable convolution in MobileNet 
can greatly reduce the computational complexity. In addi-
tion, AE feature extraction takes about 3–4 times more time 
than MobileNet and Vgg16 to extract top-level features. 
The reason is that AE's computational complexity is higher 
due to its unsupervised feature extraction. However, note 
that the total time of AE_axial_32 is less than VGG16_
entropy_32, and the total time does not exceed 2 times more 
than MobileNet_axial_32. In particular, compared with the 
2D transfer network VGG16_entropy_img, the total time 
of our 3D network AE_axial_32 is only about 1/4 of it. The 
reason is that the 3D network in this paper uses shared net-
work weights, so the final training time and testing time are 
greatly reduced. On the other hand, the conventional 2D 
transfer network does not share the weights of image slices, 
the large number of the 2D slices increase the training and 
testing time.

6.3 � Other factors in classification methods

This sub-section gives the influence of other factors on the 
classification of this 3D transfer learning network. First, the 
influence of the slicing methods on the results is shown in 
Fig. 9 and Table 6. The slicing methods refer to literatures 
(Glozman et al. 2016; Hon et al. 2017), as follows.

MobileNet_acs_32: slicing the MRI images of a subject 
and select 32 MRI slices close to the center of the MRI, 
including 12 axial, 10 sagittal and 10 coronal slices;
AE_entropy_32: slicing the MRI images of a subject and 
select 32 axial slices with the largest information entropy;
AE_axial_32: slicing the MRI images of a subject and 
select 32 axial slices close to the center.

After slicing, the above methods use the steps in 
Table 1 to classify, and their parameters are the same as 
AE_axial_32. From Fig. 9 that except the third trial, the 

classification accuracy of AE_axial_32 in the other four tri-
als is higher. The results show that the method of slices by 
position is better than the method of slices by entropy, and 
the slice selection should be in the same direction, such as 
axial slices.

Next, we give the influence of the number of slices on 
this classification method. Select 80, 60, 32, 20 and 10 
axial slices close to the center, respectively. The param-
eters and steps of the classification method are the same 
as the above method. The classification results are shown 
in Fig. 10 and Table 7. From the results, when the number 
of slices is 20 and 32, the classification accuracy is close. 
The accuracy of 32 slices is slightly higher than that of 20 
slices, but significantly higher than the other three ones. 
Too many slices will result in higher network complexity 
and too few slices result in lower classification accuracy. 
It can be seen from Table 8 that as the number of slices 
increases, the time for extracting bottleneck features, the 

Table 5   Running time for 
classification methods (unit: 
second)

Classification algorithm VGG16_
entropy_img

VGG16_
entropy_32

MobileNet_
axial_32

AE_axial_32

Extract bottleneck feature 2092.6 2092.6 325.5 325.5
Extract top/AE feature / 110.6 189.4 513.4
Classification layer 976.4 25.6 25.6 25.2
Total time 3069 2228.8 540.5 864.1

Fig. 9   Classification accuracy curves of slicing methods

Table 6   Classification accuracy of slicing methods

Classification method Accuracy

MobileNet_acs_32 74.50%
AE_entropy_32 76.25%
AE_axial_32 80.50%
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time for extracting AE features, and the required classi-
fication time are all longer. we find that 32 is the value 
corresponding to the number of slices when the classifica-
tion accuracy is highest. And for 32 slices, there are other 
slices that have more training time than it, so its training 
time is not the most. Therefore, the selection of 32 slices 
is the best way.

We give the influence of the number of fully connected 
layers in the classification layer on the classification of 
this 3D transfer network. Table 9 shows the average clas-
sification accuracy of AE_axial_32 when the number of 
fully connected layers is 1, 2, 3, and 4, respectively. Fig-
ure 11 shows the classification accuracy curves in five 
trials. It can be seen from the figure that the four clas-
sification accuracy curves are close. From the table, the 
average classification accuracy of 2 fully connected layers 
is slightly higher than the other three cases. Therefore, 

from the classification accuracy, a classification layer with 
2 fully connected layers is a better choice.

We also transfer the currently popular network mod-
els InceptionV3, DenseNet and VGG16 to compare with 
the ones in our article to verify the superiority of our 
method in classification accuracy and classification time. 
The number of neurons in the AE encoder and decoder 
in various methods is set as shown in Table 10. It can be 
seen from Table 11 that the classification accuracy of the 
AE_axial_32 method is still the highest. We can know 
from Fig. 12 that the classification accuracy of the five-
time cross-validation of the AE_axial_32 method is higher 
than that of the other three methods, and it can also be 
seen from Table 12, the transfer learning method we used 
takes the least time to classify.

We select the raw data of 90 AD and 90 NC subjects in 
the ADNI dataset (without any preprocessing) to test the 
several transfer learning methods used in this paper again, 
and what we select is MRI data. Its website is http://​adni.​
loni.​usc.​edu/. The steps are briefly described as follows:

ADNI_VGG16_axial_32_img: Select the 32 axial slices 
closest to the center of the MRI image slices of each 
subject, put them into VGG16 to extract the bottleneck 
features, and then classify them through the top-level 
network.
ADNI_VGG16_axial_32: After the same slice selec-
tion, the bottleneck feature is extracted by VGG16, and 
then the top-level network is used to further extract the 
top-level features. Finally, the top-level features of each 
slice of the subject are combined and sent to the clas-
sification layer for classification.
ADNI_MobileNet_axial_32: The difference from the 
ADNI_VGG16_axial_32 method is the use of MobileNet 
for bottleneck feature extraction.

Fig. 10   Classification accuracy curves of different slice quantities

Table 7   Classification accuracy for slice quantity

Classification method Accuracy

AE_axial_80 72.50%
AE_axial_60 75.50%
AE_axial_32 80.50%
AE_axial_20 79.85%
AE_axial_10 76.00%

Table 8   Classification time for 
slice quantity

Classification algorithm AE_axial_10 AE_axial_20 AE_axial_32 AE_axial_60 AE_axial_80

Extract bottleneck feature 74.8 142.2 325.5 507.0 715.0
Extract AE feature 169.0 308.6 513.4 928.5 1265.0
Classification layer 14.0 16.6 25.2 46.0 83.0
Total time 257.8 467.4 864.1 1481.5 2063

Table 9   Classification accuracy for the number of fully connected 
layers

Classification algorithm Accuracy

AE_axial_32_one_layer 79.50%
AE_axial_32_two_layers 80.50%
AE_axial_32_three_layers 78.50%
AE_axial_32_four_layers 79.38%

http://adni.loni.usc.edu/
http://adni.loni.usc.edu/
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ADNI_AE_axial_32: The same slicing method. After 
extracting bottleneck features using MobileNet, it enters 
the autoencoder for AE feature extraction. Finally, the 
AE features from each slice are combined and sent to the 
classification layer for classification.

From Table 13 and Fig. 13, we can see that using ADNI 
data for experiments, ADNI_AE_axial_32 has the highest 
classification accuracy, which is consistent with the conclu-
sions we obtained from experiments using OASIS data.

7 � Conclusion and discussion

This paper proposes a 3D transfer machine learning method 
that classify an AD and NC group with MRI. In the experi-
ment, we use OASIS-1 MRI data to compared the proposed 
method with other traditional methods. The results show that 
the proposed 3D transfer network improves the classification 
accuracy of the conventional 2D transfer network by about 
10 percentage points, and the total classification time is only 
its 1/4. We also verify our method with the data in the ADNI 
database, and the conclusion is consistent with the OASIS 
data. In addition, different transferrable CNN networks are 
also used by us to compare with the method in this paper, 
and our method showed better performance in training time 
and classification accuracy. The contribution of the proposed 
method is to utilize a 2D transfer CNN to establish a 3D 
transfer CNN, which reduces network complexity, improves 
classification accuracy, and reduces classification time. The 
method of the feature extraction and mergence with subjects 
instead of the feature itself is more reasonable, and transfer-
ring the MobileNet network, a deep separable convolution 
has lower complexity. Of course, although the 3D trans-
fer network in this paper has achieved good performance 
in classification accuracy and classification time, there are 
several points that need further discussion.

Compared with the traditional 3D CNN networks that 
directly takes 3D MRI images as input (Hosseini-Asl et al. 
2016), the classification accuracy of this transfer learning 
has not been significantly improved. However, the conven-
tional 3D CNN method will produce too many weights and 
too long training time due to the inputs of 3D images. On the 
other hand, our method utilizes shared weights for 2D slices 
images and transfer pre-trained 2D networks to our target 
data. This makes the amount of trained weights smaller and 

Fig. 11   Classification accuracy curves for the number of fully con-
nected layers

Table 10   Number of AE encoder and decoder neurons when transfer-
ring different network models

Classification method Number of AE 
encoder neurons

Number of 
AE decoder 
neurons

InceptionV3_axial_32 512、128 512、2048
DenseNet121_axial_32 512、128 512、1024
VGG16_axial_32 256、128 256、512
AE_axial_32 512、128 512、1024

Table 11   Classification accuracy of different transferred CNN pre-
training networks

Classification method Accuracy

InceptionV3_axial_32 70.25%
DenseNet121_axial_32 74.38%
VGG16_axial_32 67.25%
AE_axial_32 80.50%

Fig. 12   The classification accuracy curve of different transferred 
CNN pre-training networks
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the training time shorter. Therefore, as a assisted AD diag-
nosis, the transfer network in this paper has some advan-
tages in computing costs and training time. In addition, this 
paper only uses MRI for AD classification while the high 
classification accuracy of the literature (Zhang et al. 2011; 
Suk et al. 2014; Liu et al. 2014; Lee et al. 2019) is based on 
the multimodal classification. Besides MRI, the multimodal 
method uses PET and cerebrospinal fluid. Moreover, there 
are AD classifications with fMRI data (Wang et al. 2007, 
2006). Therefore, we can also consider more types of data 
to further improve the performance of this transfer network.

This experiment uses the data from the OASIS and 
ADNI, and has not used other data sets. Rigorously, more 
databases should be tried to obtain a more reliable clas-
sification accuracy. Since the traditional transfer network 

(Hon et al. 2017) compared in this paper uses the OASIS 
data set, the selection of this database can get a more direct 
comparison result. ADNI data is used by us for compari-
son. In future work, we can also use databases such as 
CADDementia. In addition, we only complete the clas-
sification of AD and NC. In the future, we can also try to 
achieve the classification of AD, MCI, and NC (Glozman 
et al. 2016), which will be helpful to early diagnosis and 
early treatment.

For the number of slices, this experiment gives only the 
results of 10, 20, 30, 60 and 80 slices of a subject, and does 
not try the other number of slices. Because the slices that are 
far from the center contain less structural information and 
more slices will produce more redundant information, too 
many slices reduce the classification accuracy and increase 
the running time. Therefore, more slices are not considered.

In this paper, the number of neurons of encoder in the 
dimension-reduction network should be equal to that in 
the decoder, and the number of neurons in its hidden layer 
should be less than that in its input layers. Therefore, the 
number of neurons in the encoder's two fully connected lay-
ers is set to 512, 128, and the decoder is set to 512, 1024, 
respectively. In dimension-reduction training, epochs are set 
to 5000 times and 100 times, respectively, but the classifi-
cation accuracy of the two is nearly the same. This shows 
that 100 times training can also extract good features. For 
the parameters in the classification layer, this experiment 
only gives the results of the number of fully connected lay-
ers, and does not give the discussion of other parameters. 
This is mainly because compared with other parameters, 
the number of fully connected layers has a greater influence 
on the classification results. For the activation function, we 
use a Relu and Sigmoid function. The reason why the Relu 
function is selected in the hidden layer is that, it can solve 
the problem of gradient disappearance and the calculation 
is efficient. Since this method is for a two-classification, the 
Sigmoid function is selected in the output layer. Of course, 
there are some parameters important to the performance of 
the classification layer, such as the number of neurons in the 
fully connected layer. Generally, the number of neurons can 
be determined empirically. If the number is too small, the 
network cannot adapt to large-size images. If the number is 
too large, it will increase training time and may cause over-
fitting. Therefore, the number of neurons in the two fully 

Table 12   Classification time for 
different transferred CNN pre-
training networks

Classification algorithm InceptionV3_
axial_32

DenseNet121_
axial_32

VGG16_axial_32 AE_axial_32

Extract bottleneck feature 327.6 750.8 1140 325.5
Extract AE feature 935.2 535.4 175.6 513.4
Classification layer 26.2 26.6 26.4 25.2
Total time 1289 1312.8 1342 864.1

Table 13   Classification accuracy of different ADNI classification 
methods

Classification method Accuracy

ADNI_VGG16_axial_32_img 55.49%
ADNI_VGG16_axial_32 60.83%
ADNI_MobileNet_axial_32 63.80%
ADNI_AE_axial_32 66.25%

Fig. 13   Classification accuracy curve of different ADNI classification 
methods
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connected layers of the classification layer network is set to 
512 and 256, respectively.
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