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Neural Decoding for Macaque’s Finger
Position: Convolutional Space Model

Haifeng Wu , Jingyi Feng , and Yu Zeng

Abstract— In this paper, we study how to use the number
of spike signals in a macaque’s motor cortex to estimate
the position of its finger movement. First, we analyze the
time correlation of a traditional state space model (SSM)
and derive a convolutional space model (CSM) to decode
the movement position of the macaque finger. Compared
with the traditional model, the model can correlate the
current moment state with the previous moment. In addition,
we have improved the original SSM model using the CSM
model. In its observation equation, the number of spike
signals at one is expanded to the number of spike signals
at multiple previous moments. In this way, the current time
state in the improved model can be related to the number
of spike signals at a plurality of previous times. In the
experiment, a group of public data are used to validate the
decoding performance of the model, and a least squares,
a batch recursive least squares,and a gradient descentalgo-
rithms are used to train the model. The experimental results
show that the decoding error of the CSM model and the
improved SSM model is smaller than that of the traditional
model, and thus, they have a better decoding accuracy. The
results show that the CSM model has improved about 11.7%
in x-axis decoding error performance than the traditional
models.

Index Terms— Neural decoding, TILM model, SSM model,
CSM model.

I. INTRODUCTION

NEURAL coding and decoding is an important field in
neuroscience. The study of neural circuits and how to

perceive external world and then generate behavior will reveal
the working mechanism and rule of a brain, and can also
make human body enhance the ability to sense and control
the external world. At present, neural coding and decod-
ing have been widely used in rehabilitation engineering [1].
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In neural coding, for example, an artificial cochlear is
implanted into the ear of a hearing-impaired person, and the
sound signal is encoded as a digital signal that can stimulate
the auditory nerve so that the patient has the ability to
perceive sound [2]. In neural decoding, disabled people can
use the spike signal from their cerebral motor cortex to directly
control the movement of the device and realize brain control
technology and intelligent life [3], [4], such as controlling the
mouse, paraplegic patients’ prosthesis, robot arm [5], [6] and
so on.

Neural coding maps the external world to brain activity [7],
and need to sort spike signals from brain regions via some
classification methods. Then, the sorted spike signals will be
related with bone or muscle action to the external world.
Neural decoding is the inverse process of neural coding, and
parses the human body’s actions to the outside world from the
brain activity. For example, the movement process of the body
can be predicted or estimated through the sorted spike signals.
The position estimation of a macaque’s finger movements in
this paper is a typical neural coding and decoding problem.
The first step is neural coding, where the number of spike
signals from a macaque’s motor cortex will be related to
the moving position of the macaque finger. Since the step
has been discussed much in [8] and [9], this paper will no
longer focus on it. The next step is neural decoding, where the
moving finger’s position is estimated through the established
relationship between the number of spikes signals and the
finger position. This paper will focus on how to better solve
the problem of neural decoding.

The coding problem of the macaque finger movement is
earlier described in [10], which find that there is a relationship
between the direction and location of upper limb movement of
a macaque and the spike signal in its motor cortex. The rela-
tionship is also confirmed in later literatures [11]. In traditional
decoding methods, a time-independent linear method [12] is
adopted earlier. The method uses a time-invariant linear model
(TILM), where a movement state at one moment and a spike
signal recorded at the moment are regarded as a time-invariant
and proportional relationship. The advantage of the method is
to implement and calculate easily. However, the accuracy of
the estimation is not high since the state at each moment in a
motion trajectory is considered as an independent process.

Now, a popular decoding method is to use a state
space model (SSM) to solve the decoding problem and
SSM has already been widely used in neuroscience [13].
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Shanechi et al. [14] establish an SSM model and use an
optimal feedback control to decode the state of a macaque
movement. Aghagolzadehet al. [15] use an SSM model to
decode 3D stretching and grasping motions from a macaque’s
neuron activity in primary motor cortex. Feng et al. [16] use
an unsupervised cubature Kalman filter (UCKF) to decode the
position of a macaque’s finger movements via an SSM model.
Hotson et al. [17] use a recursive Bayesian estimate (RBE)
to improve the decoding performance. Brockwell et al. [18]
use successive state estimates to decode motor cortical sig-
nals. From the observation equation in the models for neural
decoding, SSM is still a kind of TILM model. Compared
with the independent linear method, however, SSM lets a
movement state at one moment correlated with that at one
previous moment, instead of regarding the finger movement
state in the trajectory as a time-independent process. Thus,
the estimation accuracy has been greatly enhanced.

After analyzing the temporal correlation of the TILM mod-
els, this paper will start from an SSM model, correlate a
movement state at one moment with multiple states at several
previous moments, and obtain another TILM model. The
model expresses the moving position of a macaque’s finger as
a convolution of the spike signal vector and a group of constant
coefficients, called a convolutional space model (CSM). The
CSM is still based on the SSM model, except that the number
of spike at a current state is extended to that at multiple
previous moments. In order to solve the model, some popular
algorithms such as a least squares (LS), a steepest gradient
descent algorithm (GDA) and a Kalman filter are used to
obtain the model parameters. At the same time, the influence
of the temporal correlation on CSM model is also analyzed.
In experiments, we use a group of public data recording real
neural spike signals of a monkey’s finger movement to verify
the temporal correlation. The experimental results show that
when the temporal correlation is considered, the decoding
errors of the finger movement position in CSM are less than
those in traditional models, such as the independent linear
model and SSM model.

The rest of this paper is organized as follows. Section II
contains the related work about an SSM model. Section III
describes the decoding problem. We derive the CSM model
and analyze the impact of temporal correlation on the model
training in Section IV. Section V gives decoding algorithm
steps for the CSM model and Section VI shows experimental
results. In Section VII, We discuss some problems for the
CSM model. Finally, conclusions are drawn in Section VIII.

II. RELATED WORK: SSM MODEL

SSM is currently a very popular model in the neural
decoding for macaque finger movement, and its state equation
and observation equation is expressed as [7] and [17]–[19].

yk = h(yk−1) + ωk (1-a)

sk = f(yk) + vk (1-b)

where yk is the position information of finger movement
at time k, k = 0, 1, …K − 1, K is the total number of
sampling points, sk is a Ne × 1 column vector which denotes

Fig. 1. Macaque finger movement track coding.

the number of neuron spikes collected from Ne electrodes at
time k, h(·) represents the function of a state equation, f(·)
represents the function of an observation equation, ωk is a
Gaussian white noise with a zero mean and variance σ 2 [16],
vk = [v0k, v1k, . . . , vNe−1,k]T is a Gaussian white noise vector
with a zero mean and a variance matrix Rv , which is a diag-
onal matrix with a diagonal vector [σ 2

0 , σ 2
1 , . . . , σ 2

Ne−1] [16].
Usually, successive state estimation method could solve the
state-space equation (1), such as Kalman filter (KF) [19],
particle filter [18] and RBE [17]. Compared with the linear
method [7] that treats {yk, k = 0, 1, . . . K − 1} as an indepen-
dent process, SSM model would produce a more stable and
smoother decoding curve for finger movement position.

In addition, SSM model needs to know the functions h(·)
and f(·). A common method is to regard the observation
function as linear ones and use training data to obtain them.
In this case, (1) becomes

yk = yk−1 + ωk (2-a)

sk = ak yk + bk + vk (2-b)

where ak and bk are both Ne × 1 column vectors. Since the
coefficient vectors are constant, (2-b) is still a TILM model.
In addition, an unsupervised UCKD method [16] rewrites (1)
into two groups of state space equations, one for solving
the finger movement position and the other for solving the
f(·) function, so that no training data are needed. From the
SSM model on (1)-(2), the position state yk at the current
moment is only correlated to the previous moment state yk−1.
In the next section, we will analyze SSM model from the
temporal correlations.

III. PROBLEM FOR DECODING MOVEMENT POSITION

AND TEMPORAL CORRELATION OF MODEL

The estimation of a macaque’s finger movement position is
a typical neural coding and decoding process. First, we need to
establish a one-to-one relationship between the coordinates of
the finger movement at one moment and the number of spike
signals from the macaque’s brain at the moment. Second, via
the established relationship, we will estimate the coordinates
of the movement from the number of spikes. The illustration
of the problem is shown in Fig.1.

Select a macaque and let its finger move in a screen of
length L and width B . When a target appears on the screen,
the macaque’s finger will move to the target. Then, the target
disappears and the macaque’s finger moves to the next one.
The training will repeat until the macaque is able to complete
the task. Besides, we need to implant arrays of electrodes in
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the brain regions associated with the finger movements. If the
sampling period of the data is �t , the electrodes will collect
signals sk with Ne neuron signals corresponding to the finger
movement at time k�t , k = 0, 1, . . . K − 1.

In addition, we also need to record the macaque’s finger
movement position at each moment. If the finger moves
to point A at time k�t and the corresponding number of
spike signals is sk , we will record an X or Y coordinate
corresponding to the finger movement at the time, yk . If the
macaque finger movement spend a total of time (K − 1)�t ,
we will obtain the spike signals sk and position coordinates yk ,
k = 0, 1, . . . K − 1. In fact, the decoding is to obtain ŷk from
sk and make ŷk and yk as similar as possible.

From the finger movement process of the macaque, the tra-
jectory {yk, k = 0, 1, . . . , K − 1} of the moving position
should be a continuous process with a speed and direction.
It may be not optimal that traditional decoding methods based
on the SSM model in (2) correlates the position state at one
current moment only with that at one previous moment. The
movement state at one current moment should be correlated
with multiple states at several previous moments. In order
to find a model with better temporal correlation, this paper
attempts to establish a correlation between the current position
state and the several previous states.

IV. TEMPORAL CORRELATION OF TIME

INVARIANT LINEAR MODEL

A. CSM Model

This section will focus on the temporal correlation of
a decoding model, where we let the current moment state
correlated with several previous moments. In the derivation
of the model, we will start from the SSM model, and obtain
a convolutional space model. If the position state yk at time k
in our model is correlated with the previous P moments k,
k − 1…, k-P + 1, then from (2-b), the position coordinates at
time k-p will be

yk−p = wT
psk−p + b�

p + ω�
p, p = 0, 1 . . . P − 1 (3)

where wT
p = a†

k−p is a row coefficient vector, (•)T denotes
conjugate transpose, (•)† denotes a pseudo inverse, b�

p =
−wT

pbk−p , ω�
p = −wT

pvk−p is still zero-mean Gaussian white
noise [16]. Substituting (2-a) into (3) get

⎧
⎨⎨⎨⎨⎨

⎨⎨⎨⎨⎩

yk = wT
0 sk + b�

0 + ω�
0

yk = wT
1 sk−1 + b�

1 + ω��
1

...

yk = wT
P−1sk−P+1 + b�

P−1 + ω��
P−1

(4)

where ω��
p = ω�

p +ωk−1 +ωk−2 + . . . ωk−p , p = 0, 1 . . . P − 1
is still Gaussian white noise [16]. Adding all of the formulas
in (4) will have

yk =
�P−1

p=0
w�T

psk−p + B + �k (5)

where w�T
p = wT

p

�
P denotes a weight vector,

B = (b�
0 + b�

1 + . . . b�
P−1)

�
P denotes a bias, and �k =

(ω�
0 + ω��

1 + ω��
2 + . . . ω��

P−1)
�

P is still a zero-mean Gaussian

Fig. 2. Illustration of two-dimensional convolution space model.

white noise [16]. Note that w�
k and sk in �P−1

p=0 w�T
psk−p are

both vectors and then let

w�
p = [w�

0p, w
�
1p, . . . , w

�
Ne−1,p]T

sk−p = [s0,k−p, s1,k−p, . . . sNe−1,k−p]T

Thus,

yk =
�P−1

p=0

�Ne−1

n=0
w�

npsn,k−p + B + �k (6)

Eq. (6) shows that the position state yk is a two-
dimensional (2D) convolution of the spike vector sk with the
weight vector w�

k , as shown in Fig.2. For simplicity, let

W = [w�T
0 , w�T

1 , . . . w�T
P−1, B]T

Sk = [sT
k , sT

k−1, . . . sT
k−P+1, 1]T

And then we have

yk = WTSk + �k (7)

Eq. (7) further shows that the position state yk is the inner
product of the spike matrix Sk and the weight matrix W
plus the Gaussian white noise �k . As can be seen from
the 2D convolution model of (6-7), yk is correlated not
only with the spike vector sk at time k, but also with
sk−P+1, sk−P+2, … sk−1. It should be noted that the two-
dimensional convolution space model is more suitable for
multi-dimensional spike signal processing. If the model in
this paper is changed to one-dimensional convolution, only
one-dimension spike signals can be processed.

From CSM model in (7), further, we will revise the original
SSM in (2) into

yk = yk−1 + ωk (8)

Sk = Ayk + Vk (9)

where A is an coefficient matrix, Vk = [v0k, v1k, . . . , vP Ne ,k]T

is a Gaussian white noise vector with a zero mean and a
variance matrix RV which is a diagonal matrix with a vector
[σ 2

0 , σ 2
1 , . . . , σ 2

P Ne
]. If A† = WT, multiplying both sides of (9)

by A† will obtain (7). Thus, we will adopt a Kalman filter to
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solve the SSM model, called CSM-KF, which is shown as [20]

Gk = Pk−1 AT(APk−1 AT+RV )−1 (10)

αk = Sk − Aŷk−1 (11)

ŷk = ŷk1 + Gkαk (12)

Pk = Pk−1 − GkAPk−1 + σ 2 (13)

where ŷk is the estimated value of yk at time k.

B. Influence of Temporal Correlation on Model Training

After the model is established, the model needs to be trained
to obtain the model parameter. From Section IV-A, CSM
model lets the current moment state correlated with P previous
moments. Next, we will focus on analyzing the influence of
the parameters P on the model training.

1) Influence of Time Correlation on Training Method: Here,
we will adopt some traditional training methods, such as LS
and GDA. It might get a reduction for decoding errors to
try some newer algorithms. However, this will make some
confusion that whether the reduction comes from the CSM
model itself or the newer training algorithms. For a TILM
model, if a noise is a zero mean Gaussian white noise,
the model can be trained via methods such as LS and GDA.
Since the noise in CSM model satisfies the condition of
Gaussian white noise, LS can be used and shown as [21]

Ŵ = S̄
†
Y (14)

where S̄ = [SP , SP+1, . . . , SK ]T, Y = [yP, yP+1, . . . , yK ]T

and Ŵ is the estimated matrix of W. Compared with the time-
independent model of P = 1, the parameters of the CSM
model are P >1. For LS, therefore, the number of columns
of the observation matrix S̄ in (14) will be changed from the
original Ne +1 into P Ne +1. The change of the dimensions of
the observation matrix directly affects the training complexity
of the model. This will be analyzed in section IV-B-2.

In addition, we can use a batch recursive least squares (RLS)
to train CSM model. Thus, we have [21]

ek = yk − ST
k W̃k−1 (15)

Kk = Pk−1Sk(λ + ST
k Pk−1Sk)

−1 (16)

W̃k = W̃k−1 + Kkek (17)

Pk = [Pk−1 − Kk ST
k Pk−1]/λ (18)

where W̃k is an iteration weight at the moment k, Kk is a
gain vector at time k, Pk is an inverse correlation matrix at
time k, 0< λ ≤1 is a forgotten factor. Similarly, the number
of columns of observation matrix Sk in (15-18) also changes
from original Ne + 1 to P Ne + 1.

Besides, GDA algorithm is also a popular batch method
training model, shown as [21]

W̃k = W̃k−1 − 2μekSk (19)

where μ denotes an iteration step. Similar to RLS, the obser-
vation matrix in GDA is also the matrix Sk with P Ne + 1
columns.

TABLE I
TRAINING COMPLEXITY ABOUT PARAMETER P

In addition, CSM-KF requires training the parameter
vector A in (9). Similar to LS in (14), A can also be obtained
via an LS algorithm, shown as

ÂT = Ẏ†Ṡ (20)

where Â is the estimated matrix of A, Ṡ = [ṠP ,
ṠP+1, . . . , ṠK ]T, Ṡk = [sT

k , sT
k−1, . . . sT

k−P+1]T, Ẏ =
[ẏP , ẏP+1, . . . , ẏK ]T, and ẏk = [yk, 1]T.

2) Influence of Time Correlation on Training Complexity: In
CSM model, S̄ in LS is a (K -P + 1) ×(P Ne + 1) matrix.
Hence, the pseudo-inverse computation of the matrix S̄ require
Ln3 multiplications, where

L = K − P + 1 (21)

n = P Ne + 1 (22)

Ignoring low-order terms and plus or minus terms, the com-
putational complexity of the LS w.r.t. P can be expressed
as O(P3). In RLS, the solution of W̃k in step k needs
n3 + 2n2 + n multiplications and divisions and needs L steps.
If W̃k needs a total of T iteration cycles to converge,

RLS will require a total of T L(n3 +2n2+n) multiplications
and divisions. Also ignoring low-order terms and plus or minus
terms, the computational complexity of RLS w.r.t. the parame-
ter P can be expressed as O(T P3). For GDA, the solution of
W̃k in step k needs n2+2n multiplications and divisions, and a
total of L steps are required. If W̃k needs a total of T cycles to
converge, GDA will require a total of T L(n2 +2n) multiplica-
tions and divisions. Therefore, the computational complexity
of GDA w.r.t. the parameter P can be expressed as O(T P2).
Finally, since CSM-KF adopts an LS training method, its
computational complexity w.r.t. P can be expressed as O(P3).

Table I shows the computational complexity of CSM model
training w.r.t. P . When the value of the parameter P is 1,
CSM model is changed into a linear time-independent model.
When P > 1, the complexity of LS, RLS, GDA and CSM-KF
would be increased by P3,P3,P2 and P3 times, respectively.

3) Influence of Temporal Correlation on Model Weights: In
CSM model, the number of parameters in the convolution
kernel W is P Ne +1, which is approximately P times greater
than the number of parameters of the time-independent model.

The training results of the convolution kernel W of the
CSM model in four groups of experiments is shown in Fig. 3,
where the weight value is the 2 norm of w�

p, p = 1, 2, . . . , P ,
P = 10. More detailed parameters in the four groups of exper-
iments could be seen in section VI-B . From the figure, LS,
RLS and GDA has nearly same pattern for the distribution of
the kernel weights. As the value of P increases, the amplitude
of the convolution kernel weight gradually decreases until
at P = 10 where almost no decrement happen. This result
shows that the value of P is not necessarily too large because
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Fig. 3. Convolutional kernel weight distribution about temporal
correlation.

TABLE II
LS ALGORITHM STEPS FOR NEURAL DECODING OF

MACAQUE FINGER MOVEMENT POSITION

the contribution of its weight to the model time correlation
becomes smaller, with the increase of P .

V. NEURAL DECODING

After the weight training in the model is completed,
substituting the number of neuron spikes in test data into
CSM model will obtain a decoding value, which is in fact
the coordinate of the finger movement. Table II - IV show
total algorithm steps for the neural decoding of the macaque
finger movement position.

VI. EXPERIMENT RESULTS AND ANALYSIS

A. Experiment Data

This experiment data is provided by Hatsopoulos Lab-
oratories [7] and the download address is http://booksite.
elsevier.com/0780123838360. The details for the data acqui-
sition can be seen in Section III problem description, and the
other relevant parameters in the data are as follows.

1) Macaque’s finger moving range L = 25cm, B = 18cm
2) The number of collecting electrodes in Macaque’s brain

Ne = 42
3) Sampling period �t = 70ms
4) Data length K = 3101

The downloaded data has two groups and the details are as
follows.

1) Data 1: a K × Ne data matrix records the number of
neuron spikes, where the length is K and the num-
ber of electrodes is Ne. Another K × 2 data matrix
records X and Y coordinates, where the length is also K ,

TABLE III
BATCH ALGORITHM STEPS FOR NEURAL DECODING

OF MACAQUE FINGER MOVEMENT POSITION

TABLE IV
CSM-KF ALGORITHM STEPS FOR NEURAL DECODING

OF MACAQUE FINGER MOVEMENT POSITION

the first column is for X axis and the second column is
for Y axis.

2) Data 2: two data matrices records the number of spikes
and X and Y coordinates, and has the same format as
Data 1.

Data 1 and Data 2 are all acquired under the same conditions,
except that the finger in data 1 does not move in horizon-
tal or vertical direction and data 2 has horizontal or vertical
movement. Also, a small number of position sample points
exceed the finger’s range of motion in the Y axis of the data
set. Hence, the position sample points of the data set beyond
the active area will be removed.

B. Experiment and Parameter Setting

Since data 1 and 2 have different characteristics, we con-
sider processing data from multiple cross validations. In this
section, we will use five groups of experiments to evaluate the
performance of neural decoding methods. The data processing
in the five groups of experiments are as follows.
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1) Experiment A: Holdout verification [22] on data 1, 70%
for training, and 30% for testing;

2) Experiment B: M-fold cross validation [22] on data 1,
where M = 10;

3) Experiment C: M-fold cross validation [22] on data 2,
where M = 10;

4) Experiment D: Data 1 for training, data 2 for testing;
5) Experiment E: Data 2 for training, data 1 for testing.

For M-fold cross-validation in Experiment B and C , a root
mean square error (RMSE) ec is used to evaluate the perfor-
mance of decoding methods and defined as follows

ec = 1

M

�M

m=1

	
1

K �
�K �−1

k=0
(ŷm,k − ym,k)2 (23)

where ŷm,k and ym,k are the decoded coordinate values and
the real ones, respectively and K � is the cross-validated data
length. Experiments D and E use another RMSE, er to
evaluate the performance, and the definition of er is

er =
	

1

K

�K−1

k=0
(ŷk − yk)2 (24)

where ŷk and yk are the decoded coordinates and the real ones
in the test data, respectively and K is the length of the test
data. Also, ec and er could reflect the generalization ability
of decoding methods in Experiment B to E . And, ec is for
Experiment B and Experiment C, where the M-fold cross-
validation method is adopted. er is for Experiment D and
Experiment E, where a training data set and a test data set
are required.

The above five groups of experiments will calculate
ec and er for Linear [7], KF[19], RBE[17], UCKD[16] and
CSM methods, respectively for comparison and some para-
meters of these methods are set as follows.

1) Linear: train a time-independent model through training
data, i.e. the model in (3) where P = 1 and then decode
movement position through testing data.

2) KF: train the model in (2) via LS, and then use Kalman
filter to decode movement position. The parameters in
Kalman filter are, an initial decoding value ŷ0 = 10,
covariance Py,0|0 = 1, a state noise variance σ 2 =
0.8, an observe noise variance Rv = (s̄ − ŝ)T(s̄ − ŝ)/
(K − 1), where s̄ = [s0, s1, . . . , sK−1]T and ŝ = ŸẄT,
Ÿ = [ÿ0, ÿ1, . . . , ÿK−1]T, ÿk = [yk, 1]T, Ẅ = Ÿ

†
s̄.

3) RBE: an X-axis estimated range is 0.5: 1: 24.5 (denoted
as a vector starting from 0.5, ending at 24.5 and spacing
on 1), and a Y-axis estimated range is 0.5: 1: 14.5.

4) UCKD: an initial decoding value ŷ0 = 0, a weight ŵ0 is
uniformly distributed random signal whose mean value
is 0, a covariance Py,0|0 = 1, Pw,0|0 = 0.05 I where I
is an identity matrix, a state noise variance σ 2 = 0.8,
a weight noise covariance Rw = 0.01 I, a forgetting
factor λ = 0.005, and an observed noise variance Rv is
the same as KF method.

5) CSM: Unless otherwise stated, a forgotten factor λ =
0.9999, an iteration step μ = 2 × 10−6, a temporal-
correlation parameter P = 10, an iteration cycle for
RLS T = 3 and an iteration cycle for GDA T = 100.

Fig. 4. Curves for decoding finger position in Experiment A.

In addition, we have considered three traditional models and
an SSM model from CSM. Their parameters are as follows.

1) Polynomial: the model is expressed as yk = Ẅ
T

s2
k +

Ẇ
T

sk+B , where Ẅ and Ẇ is are both coefficient vector,
and s2

k is also a vector whose elements are the squares
of the elements of sk .

2) Gen-Linear: the model is expressed as yk =
exp(Ẇ

T
sk + B).

3) ARMA: the model is expressed as �
Q−1
q=0 w��

q yk−q =
�P−1

p=0 w�T
psk−p + B + �k , where w��

q is dented as AR
coefficients, Q = 10 and P = 10.

4) CSM-KF: a state noise variance σ 2 = 0.8, and an
observe noise variance RV = (Ṡ − Ŝ)T(Ṡ − Ŝ)/(K − 1)

where Ŝ = ẎÂ
T

.

C. Decoding Result Analysis

Fig.4 shows the X-axis decoding curves of 200 sampling
test data points for each algorithm in Experiment A. From
the figure, all of methods can approximately track the real
finger moving curve, but for each algorithm, their performance
is not exactly the same. The decoding curves for the three
traditional regression methods, polynomial fitting, generalized
linear function and ARMA model have some glitches or jitters,
which will result in poor overall estimation performance. The
reason is that these methods do not consider the temporal
correlation in regression models. Also, the decoding curve of
Linear shows more jitter. For example, the curve fluctuates
frequently around points 80 to 100. The reason is also that
linear algorithm considers each moving coordinate state as an
independent process and discards the correlation of adjacent
data points. Compared with other decoding algorithms, UCKD
have a larger deviation, and especially has a reverse direction
to the actual decoding curve in points 120-130 and 150-160
because the algorithm uses an unsupervised method. When
decoding the X-axis, UCKD sometimes does not recognize
the direction of the finger movement, but the algorithm has
good recognition of the Y-axis from Table VI. The curves
of KF and RBE algorithm both based on SSM model is
smoother and less jerky than Linear algorithm because SSM
model correlates a state at one current time with one previous
moment. However, it should be noted that the curves do not
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TABLE V
X-AXIS AND Y-AXIS (IN PARENTHESES) ESTIMATION ERROR, UNIT: cm

TABLE VI
X-AXIS AND Y-AXIS (IN PARENTHESES) ESTIMATION ERROR, UNIT: cm

fully track the actual curve in some places where the trend
reverses. For example, near points 40-60, the decoding curves
do not fully reflect the trend of the actual curve. On the other
hand, LS, RLS and GDA algorithms based on CSM model can
track the actual curves even at trend reversals, such as points
20-40, 40-60 and 80-100. The results show that the correlation
established between the current state and the states at several
previous moments achieves good tracking performance.

The above results give a qualitative analysis. Next, we will
give a quantitative analysis through the evaluating metric of
RMSE. Table VI shows X-axis decoding results for each algo-
rithm in Experiments B to E, where Experiment B and C show
the metric of ec, and Experiment D and E show the metric
of er . The average values of the four groups of experimental
results ranked from the highest to the lowest are UCKD, RBE,
Linear, KF, CSM-KF, CSM-GDA, CSM-RLS and CSM-LS,
respectively. Especially, LS’s minimum RMSE is about 11.7%
smaller than KF’s minimum RMSE. In addition, for each
group of experiments’ RMSE, the four decoding algorithms
based on CSM model are less than or close to the traditional
algorithm, except that GDA’s RMSE is 4.56cm and CSM-KF’s
RMSE is 4.32cm in Experiment D, higher than traditional
Linear and RBE, which shows that the GDA and CSM-KF
have a weak generalization ability to the data in Experiment D.

In addition, Table VI also gives Y-axis decoding results
for each algorithm. The average RMSE values of the four
experimental results are UCKD, Linear, CSM-KF, RBE,
CSM-LS, CSM-RLS, KF, and CSM-GDA from the highest to
the lowest. For the results of the four groups of experiments,
the errors of the decoding algorithms based on CSM are
less than or close to traditional algorithms. However, GDA
with the least errors is only 6.1% smaller than KF with the
least errors in the traditional algorithms. The performance
improvement is not as good as the results for the X axis. The
result also shows that the CSM model for the X axis has better
results than that for the Y axis. That is, CSM’s generalization
for the Y-axis is stronger than that for the X-axis. One of
the reasons is that the Y-axis test data has more similarity to

TABLE VII
THE ESTIMATION ERROR OF THE TWO-DIMENSIONAL PLANE, UNIT: cm

Fig. 5. Estimation error on X-axis v.s. temporal correlation parameter P
in Experiment B to E.

the training data set. Finally, Table VII shows the estimation
error results of each algorithm for 2D planes. The decoding
results are similar to Table VI, and the algorithms with the
least errors are still the algorithms based on CSM model.

Fig.5 shows the impact of P on the decoding performance
of CSM model, and gives the RMSE curves of LS, RLS, GDA
and CSM-KF in Experiment B to E . As can be seen from the
figure, the curves of LS and RLS are almost coincident, and
after about P = 20, the curves begin to rise. In Experiment
B, C and E , the curves of LS, RLS and GDA based on
CSM and CSM-KF all drop to about 3cm before P = 10.
In Experiment D, the curve trend of GDA is, dropping, rising,
dropping and then being stable, while the curve trend of LS,
RLS and CSM-KF is rising, being stable and then rising.
It should be noted that the errors for the four algorithm are
all be smaller at about P = 10. P is in fact a parameter about
temporal correlation in the process. Excessive small value of
P will cause under-fitting. Of course, excessive large value
of P will cause over-fitting. Both of under- and over-fitting
will make the decoding errors increase. Therefore, it can be
analyzed from the figure that P = 10 can better guarantee
that the three algorithms based on CSM have smaller errors
for the finger position decoding.

Fig.6 shows the impact of iteration cycles T on the decoding
performance of CSM and gives the RMSE v.s. T curves of
RLS and GDA in Experiment B to E, respectively. As can be
seen from the figure, the curve of GDA drops rapidly when
T varies from 1 to 10, drops slowly when T varies from
10 to 40, and tends to be a straight line after about T = 40.
On the other hand, the curve of RLS is always in a steady
state whatever T is. From the above analysis, the value of T
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Fig. 6. Estimation error on X-axis v.s. the number of iterations cycle T
in Experiment B to E.

TABLE VIII
THE TRAINING TIME OF CSM MODEL ALGORITHM, UNIT: SECONDS

for GDA can be set as low as 40, because the errors do not
decline much even if T is greater than 40. For RLS, only one
iteration cycle can guarantee a smaller decoding error because
its error curve is a straight line.

To evaluate the computational complexity of the four
algorithms in the CSM model, finally, Table VIII shows the
training time of conventional methods and CSM model in
Experiment D, where T = 30 in UCKD, T = 3 in RLS and
T = 60 in GDA. The PC computer operation system running
the decoding algorithms in the table is Windows 7 Ultimate
64-bit SP1, the processor is Intel Corei5-6400@2.70GHz
quad-core and the processing software is MatLabR2017b.
The training method based on the CSM model, CSM-LS
and CSM-KF’s training time is more than Linear and KF,
although all of them use Least Square. And, CSM-RLS and
CSM-GDA’s training time is more than RBE, although all of
them use iteration methods. The reason is that the number
of training weights in the CSM model increases when the
parameter P is introduced. Besides, the reason for UCKD’s
more training time is that it adopts two SSM model. One is
for weight training, and the other is for position estimation.

VII. DISCUSS

In this paper, we study the temporal correlation of the
decoding model for macaque’s finger position, use CSM model
to decode the position, and train CSM model through three
algorithms. Compared with the traditional decoding models,
CSM model can reduce decoding error. However, there are
some problems which need further discussion about CSM
model and the training algorithms.

First, after analyzing the temporal correlation, the introduc-
tion of the parameter P increases the number of parameters
that need to be trained. The number of weights a and bases b
trained in the traditional SSM model (2) is 2Ne, but this
number will become P Ne + 1 in CSM model. Due to the

increase of training parameters, the complexity of training
algorithm will inevitably increase. However, since the train-
ing is completed only in a training step and only several
corresponding multiplications are added in a decoding step,
the increase in complexity has little effect on the decoding.
Second, the value of temporal-correlation parameter P can
have a significant impact on the decoding performance. Too
large value of P will result in over-fitting and too small value
will result in under-fitting. To determine an appropriate P ,
a data set can be divided into three parts, a training set,
a test set, and a validation set. Given a group of P values,
the training weights are obtained in the training set, and
then the decoding errors are obtained in the test set. The P
value corresponding to the smallest error will be the optimal
value. The optimal P value and weights substituting into the
validation set will produce the final decoding error, which can
measure the decoding performance of the model.

In addition, it can be seen from the experimental data that
although the performance of CSM model is mainly improved
on the X-axis instead of the Y-axis, the decoding errors of the
2-D plane are greatly reduced.

For batch training methods, besides, RLS and GDA
require some iteration cycles. From the experimental results,
the performance of RLS with one cycle is close to that with
several cycles. Thus, the number of cycle can be set as 1. For
GDA, the number of cycles needs more than 40 to be conver-
gent, which in turn will increase computational complexity.
However, GDA’s error decreases rapidly in the first 10 cycles,
and is still decreasing but tends to be flat in the subsequent
cycles. In order to reduce the cycle time, thus, it is not
necessary to set too many cycles to be convergent, and T = 10
is a feasible option. Moreover, the computational complexity
for GDA can be denoted as O(T P2). Compared with the other
two algorithms’ O(P3) and O(T P2), hence, the increase of T
sometimes does not necessarily produce too much complexity.

It should be noted that the training CSM method in this
paper is still a supervised training method, because the decod-
ing cannot be done without training data. In fact, human
learning is a kind of unsupervised learning. If there is an unsu-
pervised learning method which will be able to decode finger
movements without training set, the method would be a more
practical learning method. Although UCKD is an unsupervised
method, unfortunately, it does not have better performance for
the X-axis decoding. In addition, semi-supervised or weak-
supervised decoding methods can also be considered even if
training data’s label information is incomplete. For example,
there are only some approximate information of the finger’s
movement position rather than the exact information in train-
ing data. This may be one next study direction.

Finally, CSM model itself is a convolutional model and
the recent popular deep convolutional neural network (CNN)
seems to be used for the model. Here, we give some prelimi-
nary results. Fig.7 shows the X-axis decoding curves of a deep
convolutional neural network algorithm in Experiment A. The
code of convolutional neural networks is from https://github.
com/rasmusbergpalm/DeepLearnToolbox. From the figure,
the decoding curve can nearly track the real curve, but it
has the following problem. The first one is, the convolutional
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Fig. 7. Estimation error curves of finger movement on X-axis via a
convolutional neural network in Experiment A.

network used in the experiment randomly generates initial
parameters. Thus, its decoding performance becomes random.
How to determine a good initial value is an important problem.
Besides, the decoding curve by the convolution neural network
is sometimes in an opposite direction to the real curve. From
the figure, most of points from 1 to 200 can keep up with the
real movement position points, but some inversions happen in
points from 200 to 350. In addition, the convolutional neural
networks are currently more used for classification. When it
is used for regression of this position decoding, our method
is to divide continuous values into several intervals. Each of
intervals corresponds a class. However, the number of intervals
will have an impact on decoding accuracy and complexity.

VIII. CONCLUSION

It is a typical neural decoding problem to estimate a
macaque’s finger movement position through spike signals
in the macaque’s motor cortex neurons. This paper studies
the temporal correlation of the decoding model and uses a
linear time-invariant convolutional model, called CSM model
to decode the finger position. Then, LS, RLS, GDA and KF
algorithms is used to solve the model. After analyzing the
temporal correlation, P value in CSM model will affect the
performance of neural decoding. When P = 1, the model is
in fact a linear time-independent model, and when P > 1,
it is the convolution space model, where the finger movement
position can be expressed as the 2D convolution of a cluster
vector of spike signals and a group of constant coefficients.

In the experiments, we use the public data to give five
groups of experimental results, where Holdout and Cross-
validation method are adopted to evaluate the decoding
performance of CSM and traditional methods. From the
results, CSM model has improved about 11.7% in X-axis
decoding error performance than the traditional models.

In addition, the experimental results also confirm that the
correlation between the state at one current moment and that
at ten previous moments for the public data used in this
paper, has better decoding error performance. Finally, RLS and
GDA based on CSM model adopt the batch method. From the
results, RLS’s convergence needs only one iteration cycle, but
GDA algorithm has more iteration cycles.

From the decoding error in Table VI and Table VII, GDA
algorithm in the CSM model has fewer decoding errors than
the other three algorithms. And, from the training time in
Table VIII, GDA’s time is less than RLS and is not much more

than LS and CSM-KF. Therefore, GDA should be a better
method because it has better performance on decoding errors
and training time.
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