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Since functional Magnetic Resonance Imaging (fMRI) signals are a group of sparse signals, and its 
autocorrelation matrix contains limited information, it is difficult to accurately locate the brain activation 
area directly using traditional blind separation algorithms. For the issue, this paper proposes a method 
with inverse-sparse transform and second order blind identification (SOBI) for the separation of the 
activations. The contribution of this paper is to achieve the separation of sparse brain map signals 
and have lower computational complexity than higher-order statistical BSS. In experiments, we use 
both simulated and measured fMRI data to evaluate our method. The experimental results show that 
the proposed method’s running time is only 1/30 of a higher-order statistical independent component 
analysis (ICA) algorithm, while its separation errors is close to ICA and less than half of a traditional SOBI 
algorithm.

© 2021 Elsevier Inc. All rights reserved.
1. Introduction

Functional Magnetic Resonance Imaging (fMRI) has been widely 
used in disease diagnosis and brain science research owing to 
its non-radiation and non-trauma, higher spatial resolution and 
signal-to-noise ratio than Electroencephalogram (EEG) and Mag-
netoencephalography (MEG). In the cortex area of brain activity, 
the relative decrease of deoxygenated hemoglobin concentration 
will lead to the enhancement of local magnetic field unevenness of 
blood vessels and peripheral tissues [1]. From this, fMRI can detect 
Blood Oxygenation Level Dependent (BOLD) in a subject’s brain 
area. Collecting fMRI data requires designing experimental tasks 
first. When the subject performs a given task, the BOLD signal in 
the brain area will change accordingly [2]. From the changing sig-
nal, a task-related (CTR) brain active zone can be located using a 
related algorithm. Therefore, how to quickly and accurately locate 
the active area is of great significance for the corresponding psy-
chological behaviors and diseases.

To address fMRI activation location, many scholars have pro-
posed a variety of algorithms, where Statistical Parametric Maps 
(SPMs) [3,4] are widely used. SPMs is a statistical method, and con-
volves a stimulus function corresponding to a task with a Hemo-
dynamic Response Function (HRF) to obtain a general linear model 
(GLM) [5] design matrix. A restricted maximum likelihood (REML) 
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[6] or Bayesian algorithm [7,8] can be used to estimate the GLM 
parameters. Under a null hypothesis, then, the GLM parameters 
statistically analyzed through methods such as T test and F test, 
so as to obtain the statistical maps of the parameters about brain 
activation regions. However, this method requires the GLM design 
matrix [9] to be known in advance, and the matrix design has 
some uncertainties. Thus, how to design the matrix will directly 
affect the locating result. In addition, in order to make an fMRI 
voxel’s probability distribution closer to the Gaussian distribution, 
this method also needs to perform temporal and spatial smoothing 
[10]. This will degrade the temporal and spatial resolution of fMRI 
data.

In fact, the observed fMRI signals can be seen as a linear com-
bination of spatial maps (SMs) of activations and time courses 
(TCs) [11]. Therefore, locating fMRI activations can be regarded 
as a blind source separation (BSS) [12] issue. Most BBS algorithms 
use the statistics of observed signals to complete the separation. 
From this, blind separation algorithms can be roughly divided into 
higher-order-statistics [13–15] and second-order-statistics algo-
rithms [16]. In higher-order-statistics algorithms, the most widely 
used one is independent component analysis (ICA) [17–22], which 
uses maximized kurtosis, likelihood or negative entropy to sep-
arate signals that are statistically independent and satisfy non-
Gaussian distribution characteristics. The earlier application of ICA 
to fMRI separation is proposed in [17]. Without the estimation of 
TC, the method uses Comon’s ICA algorithm [18] and Bell’s ICA al-
gorithm [19] to achieve an accurate separation of CTR activations. 
However, the both show slow convergence. In many ICA methods, 
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FastICA [20] adopts batch computation and fixed-point iteration 
and thus has fast convergence and high robustness. GIFT (Group 
ICA of fMRI Toolbox) method [21] uses FastICA, where multiple 
subjects are combined into a group to reduce noise and a princi-
pal component analysis (PCA) algorithm performs dimensionality 
reduction [23]. It can effectively find the CTR activations and have 
better computation speed. Even for the faster FastICA in ICA al-
gorithms, however, its computational complexity is still high due 
to its fourth-order statistics and much iteration for convergence. 
Compared with higher-order ICA algorithms, second-order blind 
identification (SOBI) algorithms [24–26] only calculate a correla-
tion matrix of observed signals. Thus, they are less computationally 
complex and also receive many attentions. Unfortunately, the fMRI 
activation signals appear sparsity [27], each of which only has val-
ues in its activation regions and are close to zero in the other 
regions. Therefore, the information that the autocorrelation matrix 
of the fMRI signals contains is not rich. This will cause that the ap-
plication of SOBI to fMRI separation will produce more separation 
errors. In order to solve the difficulty for SOBI to separate sparse 
signals, a frequency-domain SOBI (f-SOBI) algorithm [28] is pro-
posed. The algorithm performs inverse Fourier transform on the 
signals to obtain a rich autocorrelation matrix, which can achieve 
better separation of sparse signals. However, the algorithm has to 
be performed in the case with small noise. When the noise of the 
fMRI signal is large, the separation performance of f-SOBI will de-
crease.

In this paper, we propose an inverse-sparse transformation 
method to solve the difficulty of second-order blind separation of 
fMRI signals. The idea of this method is to transform the sparse 
fMRI signals into another domain, so that the transformed signals 
no longer have sparsity. Thus, the autocorrelation matrix of the 
transformed signals contains more information and the observed 
fMRI signals can be better separated. From the idea, we derive that 
the transformation matrix of inverse-sparse transformation should 
be orthogonal, for example, orthogonal wavelet transform, dictio-
nary learning and other orthogonal transformation methods can be 
[29–31]. From the view of the transformation matrix, the f-SOBI 
algorithm is only an inverse-sparse algorithm using an orthogonal 
inverse-Fourier transform matrix. In order to make f-SOBI can be 
used for the separation of noisy fMRI signals, we perform group-
dimension reduction and whitening on the fMRI signals of multiple 
subjects with same tasks and thereby propose a called group f-
SOBI (GFS) algorithm. To further reduce the complexity of GFS, we 
use an orthogonal cosine transform matrix to perform an inverse-
sparse transform, and propose a called group-cosine SOBI (GCS) 
algorithm. Because GFS and GCS both use second-order statistics, 
their complexity is lower than that of higher-order ICA algorithms.

In experiments, we use a public simulation software named 
SimTB [32] to generate a group of simulation data, and also use 
a group of real fMRI data to test the algorithms. For the simula-
tion data, the separation error of the proposed algorithms is less 
than half that of traditional SOBI and close to that of ICA, but their 
running time is only 1/30 of ICA. For the real data, the locations 
of activations by the proposed algorithms are consistent with ICA, 
but their running time is only 1/5 of ICA.

2. Localizing FMRI activation method

2.1. SPM method

SPM method [3,4] is a widely used method for localizing fMRI 
activations. This method generally uses the GLM model. As shown 
in Fig. 1, let BOLD signals y ∈RT ×1 be expressed as [5]

y = Dβ + e (1)

where
2

Fig. 1. Generalized linear model in SPM.

T is the number of scans, i.e. a time factor,
D ∈RT ×P is a design matrix consisting of reference signals and 

basis functions that can be obtained in experiments,
β ∈RP×1 is a scale coefficient vector of regression,
P is the number of regression coefficients,
e is an error vector.

Therefore, given the observation y, an objective function
J (β|D, y) can be designed to obtain an estimation of β as β̂ =
arg maxβ J (β|D, y). Different objective functions will produce dif-
ferent estimation methods, such as constrained maximum likeli-
hood estimation [33], Bayesian estimation [34] and so on. After 
obtaining β̂ , we can use a null hypothesis H0 : cTβ̂ = 0, where c
is a selection vector. When the distribution of the statistic T̄ is 
known, such as a t distribution or a F distribution, then given a 
significance level α, the threshold can be obtained from

α = p(T̄ > tα |H0) (2)

If t > tα where the statistic t comes from cTβ̂ , the hypothesis can 
be rejected and the corresponding regions are activations. From (1)
and (2), SPM uses statistical methods to finding activations and it 
requires the design matrix D be known so that β can be estimated. 
However, the design of D involves some uncertain factors such as 
hemodynamic response function (HRF), exogenous stimuli and low 
frequency interference. Improper matrix design will affect the final 
estimation results.

2.2. ICA method

The blind source separation method like ICA does not require 
a known design matrix. Its linear mixed model can be seen as an 
extension of GLM model in (1) to multiple voxels, shown in Fig. 2. 
If the v-th voxel BOLD signal is denoted as yv ∈RT ×1, the V voxel 
signal matrix Y = [y0, y1, ...yV −1] ∈RT ×V can be expressed as

Y = AS + N (3)

where
A = [atc] ∈RT ×C is a mixed matrix, i.e. a TC matrix,
S = [s0, s1, ...sC−1]T ∈ RC×V denotes component activation sig-

nal,
N = [ntv ] ∈RT ×V denotes additive noise,
C is the number of components.

For the ICA algorithms based on (3), the GIFT algorithm has better 
separation performance and robustness. First, it performs principal 
component analysis (PCA) on fMRI signals {Y(m)}M

m=1 of M sub-
jects who perform the same cognitive task, so that E{zv zH

v } = IN×N
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Fig. 2. Linearly mixed model in GIFT.

where zv is the v-th column vector of Z ∈RN×V , Z is a dimension-
reduced and whitened matrix and N is the dimension-reduction 
number. Then, ICA separation is performed on the whitened signal 
matrix Z. Taking FastICA with better running speed and robustness 
as an example, the separation matrix is obtained by

Wk+1 = E
{

Zg
(
WT

kZ
)} − E

{
g′ (WT

kZ
)}

Wk (4)

where g (·) is the derivative of a negative entropy approximation 
function, (·)′ denote a derivative and k is the number of iterations. 
From (4), FastICA algorithm needs to compute a negative entropy 
function which is generally a fourth-order statistic, and its sepa-
ration matrix W requires many iterations. Therefore, when FastICA 
is applied to fMRI signal separation, its computational complexity 
may not be optimal.

2.3. SOBI method

Compared with ICA with higher-order statistics, SOBI [16] only 
computes the second-order statistics, so the complexity can be re-
duced much. SOBI first computes the correlation matrix Rz(τ ) =
E{zv−τ zH

v }, and then performs eigenvalue decomposition Rz(τ ) =
U�(τ )UH where �(τ ) is a diagonal matrix of eigenvalues and U
is a matrix of eigenvectors. Theoretically, the component activa-
tion is from UHZ. Because the estimation of Rz(τ ) is sometimes 
inaccurate, however, the separation is less robust. For this, mul-
tiple correlation matrices about τ need to estimated, denoted as 
Rz(τ1), Rz(τ2), . . . Rz(τp). These correlation matrices are jointly di-
agonalized to obtain the matrix [16]

U = JD{Rz(τ1),Rz(τ2), ...Rz(τp)} (5)

where JD(·) represents the joint diagonalization function. From (5), 
SOBI’s blind separation requires several correlation matrices. If the 
signal source itself is a sparse signal, the value of the correla-
tion matrix will be very small and the separation matrix will be 
difficult to be obtained. Unfortunately, the component activation 
signals are often sparse signals.

2.4. f-SOBI method

For the problem, f-SOBI considers BOLD signals as frequency-
domain signals and perform an inverse-Fourier transform on them. 
Thus, the i-th row and the j-th column factors of the transforma-
tion matrix can be expressed as

w f
ij = e

2π i
V i j (6)

Since the transformed signals are not sparse any longer, the sep-
aration matrix can be from the correlation matrix of the trans-
formed signals. However, f-SOBI requires less noise in observation 
signals. Due to various noises in BOLD signals, f-SOBI directly ap-
plied to fMRI signal separation is not very good.
3

Fig. 3. Correlation matrix of sparse activation signals: (A) brain activation signals, 
(B) brain activation signals mapped to one-dimension data, (C) Mixed signal, (D) 
Correlation matrix of mixed signals. (For interpretation of the colors in the figure(s), 
the reader is referred to the web version of this article.)

3. Sparsity of FMRI signal

The traditional GIFT uses FastICA algorithm to separate fMRI 
BOLD signals. However, it requires the computation of fourth-order 
statistics and many iterations and the computational complexity is 
not optimal. Thus, this paper considers SOBI algorithm with less 
computational complexity. However, the traditional SOBI algorithm 
does not consider signal sparsity. From the fMRI linear mixture 
model in (3), the source signal matrix S consists of brain com-
ponent activations, and it will be sparse signals after mapped to 
one-dimensional signals, as shown in Fig. 3(A) and Fig. 3(B). Even 
after the signal is mixed with the TC matrix A, the signal Y is still 
sparse, as shown in Fig. 3(C). SOBI needs to compute the corre-
lation matrix of the observed fMRI signal Y. Due to the sparsity 
of Y, the correlation matrix of Y will contain less information, as 
shown in Fig. 3(D). Therefore, if we directly apply SOBI to the BOLD 
signal separation, the performance of the separation will be af-
fected.

This paper will consider a method to transform the mixed 
sparse signal to an inverse-sparse domain, so that the signal is no 
longer sparse. And then, the correlate matrix will be obtained from 
the transformed signals. In this case, the information contained in 
the correlation matrix will be more than the correlation matrix di-
rectly from the sparse signal. Thus, the separation matrix obtained 
from the correlation matrix will be more accurate.

4. Algorithm

4.1. Separation matrix of inverse-sparse transform

The second-order blind separation algorithm of anti-sparse 
transform needs to perform inverse-sparse transform on the sig-
nals of sparse BOLD signals, and then solve the correlation matrix 
to obtain the separation matrix. This section will explain how 
to solve the separation matrix after inverse-sparse transform. Let 
F ∈ CT ×T be a linear inverse-sparse transform matrix. Perform-
ing a linear inverse-sparse transform on each row vector in the 
dimension-reduction whitened Z matrix will obtain the matrix

X = ZF (7)

In this case, we have the following theorem.
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Theorem 1. If the inverse sparse transformation matrix F is an orthog-
onal transformation matrix, that is

FHF = FFH = I

we will have

U = JD{Rx(τ1),Rx(τ2), ...Rx(τP )} (8)

where Rx(τ ) = E(xv xH
v+τ ), τ ∈ {τ1, τ2, ...τP }, xv is the v-th column 

vector of the matrix X.

Proof. From (7), there is

Rx(τ ) = lim
V →+∞

XX(τ )H

V
= lim

V →+∞
ZF(Z(τ )F)H

V

where (•)(τ ) denotes that a matrix is shifted to the left by τ

columns. Since the inverse-sparse transformation matrix F is a 
unitary matrix, there are

Rx(τ ) = Rz(τ ) (9)

Substituting (9) into (5) will have (8). �
Theorem 1 shows that as long as the inverse-sparse transfor-

mation matrix F is a orthogonal matrix, the separation matrix 
can also be obtained by jointly diagonalizing the correlation matrix 
Rx(τ ), τ = τ1, τ2, . . . τP after the inverse-sparse transformation. If 
X inverse-sparse transformed by F no longer has a sparse form, 
the transformed correlation matrix Rx(τ ) will contain more infor-
mation than the original correlation matrix Rz(τ ). Therefore, the 
separation matrix from the transformed correlation matrix will be-
come more accurate.

4.2. Correlation matrix of anti-sparse transform

To obtain the separation matrix U, we first need to compute the 
inverse-sparse transformed correlation matrix Rx(τ ). One of meth-
ods is to perform two steps, first performing an inverse-sparse 
transform and then computing the correlation matrix. However, 
the computational complexity of this method is not optimal, and 
computing the correlation matrix in one step will be better.

Let zm = [a0, a1, ...aV −1] and zn = [b0, b1, ...bV −1] be the m-th 
and n-th row vectors of the matrix Z, and xm = [α0, α1, ...αV −1]
and xn = [β0, β1, ...βV −1] be the m-th and n-th row vectors of the 
matrix X, respectively i.e.

α j =
V −1∑
i=0

ai wij, β j−τ =
V −1∑
i=0

bi wi, j−τ (10)

where F = [wij] ∈CT ×T . Then, we have the following theorem.

Theorem 2. If the inverse sparse transformation matrix F is an orthog-
onal transformation matrix, the m-th row and n-th column element of 
the matrix Rx(τ ) can be obtained from

rx
m,n(τ ) =

V −1∑
i=0

aib
∗
i w̄ iτ (11)

Where

w̄iτ =
V −1∑

wij w∗
i, j−τ (12)
j=0

4

Proof. Since

rx
m,n(τ ) = 1

V

V −1∑
j=0

α jβ
∗
j−τ (13)

Substituting (10) into (13) will have

rx
m,n(τ ) = 1

V

V −1∑
j=0

V −1∑
i=0

aib
∗
i wij w∗

i, j−τ

+ 1

V

V −1∑
m=0

V −1∑
n=0(n �=m)

V −1∑
j=0

amb∗
n wmj w∗

n, j−τ (14)

Since F is a unitary matrix, the second term on the right of (14)
is equal to 0. Thus,

rx
m,n(τ ) = 1

V

V −1∑
j=0

V −1∑
i=0

aib
∗
i wij w∗

i, j−τ (15)

Substituting (11) into (15), we will have (12). �
Theorem 2 provides another method for solving the correlation 

matrix Rx(τ ), which let the sparse signals ai and bi multiplied by 
the transformation factor w̄iτ and then let them added. Compared 
with the two-step method of the correlation matrix, the method 
in Theorem 2 only needs one step.

4.3. Inverse sparse transform matrix

The prerequisite for Theorems 1 and 2 is that the inverse-sparse 
transformation matrix F should be an orthogonal transformation 
matrix. Thus, if the transformation matrix F is chosen as a Fourier 
transform matrix, then we will have a so-called f-SOBI algorithm. 
However, it can be known from (6) that the transformation factor 
exp(i j2π i/V ) is a complex exponential factor, and the transforma-
tion requires multiplication both by the real and imaginary parts 
of the factor. Since the purpose of the transformation is only to 
change the sparse signal to non-sparse, we can consider a real 
transform matrix, an orthogonal cosine transform matrix to reduce 
the computational complexity. Let F = [wc

ij] ∈RT ×T , where

wc
ij = λ( j) cos

[
π(2i + 1) j

2V

]
(16)

λ( j) =
{ √

1/V , j = 0√
2/V , 0 < j < V

(17)

As can be seen from (16)-(17), the cosine transform can be ap-
proximated as only the real part of the inverse Fourier transform. 
Therefore, the number of multiplications will be reduced by half.

4.4. Algorithm steps and computational complexity

For this fMRI separation algorithm, the transformation matrix 
needs to be chosen firstly. From Section 4.3, we can use inverse-
Fourier or cosine transform matrix. It is noted that the second-
order blind separation algorithm should be performed with small 
noise. Otherwise, the robustness of the joint diagonalization in (8)
will not be guaranteed due to the correlation matrix Rx(τ ) with 
more errors. Since fMRI signals usually have measurement noise 
and low-frequency interference, the second-order separation’s per-
formance will not be guaranteed. In order to reduce noise and in-
terference, therefore, group PCA dimension-reduction and whiten-
ing [22] can be performed on fMRI signals of multiple subjects 
with the same task. And then, we will compute the correlation 
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Table 1
Steps of GFS and GCS algorithm.

Input:
fMRI signals of M subjects {Y(m)}M

m=1;
Output:

Brain activation signal Ŝ
Known conditions:

Inverse-sparse transform matrix F = [wij ] ∈CT ×T

Steps:
I Dimension reduction whitening pretreatment

① Perform Group PCA on {Y(m)}M
m=1 such that E{zv zH

v } = IN×N , where zv is 
the v-th column vector of the matrix Z ∈ RN×V and N is the dimension 
reduced

II Correlation matrix calculation
② Perform the inverse Fourier transform or the inverse Cosine transform
③ Compute correlation matrices Rx(τ ), τ ∈ {τ1, τ2, . . . τP } from (11)

III Signal separation
④ Get the separation matrix U from (8)
⑤ Get brain activation signal through Ŝ = UZ

Fig. 4. Algorithm schematic diagram.

matrix and diagonalization. Thus, we will have the corresponding 
GFS and GCS algorithms, whose steps are shown in Table 1 and 
Fig. 4.

In addition, Table 2 also shows the complexity of FastICA, SOBI, 
GFS, and GCS algorithms. Since FastICA computes the fourth-order 
5

Table 2
The complexity of algorithms.

Algorithm FastICA SOBI GFS GCS

Complexity of statistics O (3V ) O (V ) O (V ) O (V )

Complexity of transformation – – O (2l f ) O (l f )

Table 3
Some parameters for fMRI simulation data in SimTB.

Experimental parameters Value

Number of subjects M 3
Number of brain regions C 9
Number of voxels V 21904 (148 × 148)

Number of fMRI scans T 150
Sampling interval TR 2 seconds

CNR1
Upper limit C̃max 2
Lower limit C̃min 0.65

CNR2
Upper limit C̃max 5.5
Lower limit C̃min 5

statistics, it needs 3V multiplications. On the other hand, the other 
four algorithms compute the second-order statistics, so only V
multiplications are needed. For the complexity of signal transfor-
mation, FastICA and SOBI do not require transformation, so the 
complexity is not listed in Table 2. When f-SOBI is transformed, 
it needs multiplications with both the imaginary and real parts of 
Fourier transformation factors. Assuming that the number of mul-
tiplied factors is l f , the complexity can be expressed as O (2l f ). 
And, c-SOBI needs multiplications only with the real parts of co-
sine factors. Thus, the complexity is expressed as O (l f ).

5. Experiment

5.1. Experimental setup

The experimental data used in this experiment includes sim-
ulated data and measured data, which are generated as follows. 
The simulation data is obtained by SimTB software [32], and its 
download address is http://trendscenter.org /trends /software /simtb /
index .html. Some relevant parameters of the data are given in Ta-
ble 3. The other parameters are set by a file named by “experi-
ment_params_ aod.m”. It should be noted that the fMRI simula-
tion data is assumed to have been aligned, so the D_motion_FLAG 
parameter is set to 0 in the experiment_params_aod.m file. In ad-
dition, we used SimTB software to generate two sets of simulation 
data with different CNRs, where CNR is defined as

CNR = u
(

C̃max − C̃min

)
+ C̃min (18)

in which u is a random number uniformly distributed between 
0-1, C̃max represents the upper limit of CNR and C̃min represents 
the lower limit of CNR. Higher CNR means larger signal-to-noise 
ratio of the data, i.e. smaller noise power. The fMRI measured 
data is from the public data in GIFT software of TReNDS labora-
tory [21]. The download address is http://trendscenter.org /trends /
software /gift /index .html. Some relevant parameters about the mea-
sured data are listed in Table 4 and the other experimental details 
can be found in [21].

In order to evaluate the performance of the algorithm in this 
paper, we will give the test results of FastICA, SOBI, GFS and GCS, 
to separate the above data. The relevant parameters of the algo-
rithms are as follows

http://trendscenter.org/trends/software/simtb/index.html
http://trendscenter.org/trends/software/simtb/index.html
http://trendscenter.org/trends/software/gift/index.html
http://trendscenter.org/trends/software/gift/index.html
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Fig. 5. Separation results for nine simulated brain regions with lower CNR, where the expected brain regions and the regions separated by FastICA, GFS, GCS, and SOBI are 
given, from top to bottom. All of the brain region signals are normalized to 0-1, and the threshold of the brain regions 3 and 4 separated by GFS and GCS is taken as 0.43 to 
eliminate the separation noise, i.e. the signals smaller than 0.43 set to 0.
Table 4
Some parameter for fMRI measurement 
data in TReNDS.

Experimental parameters Value

Number of subjects M 3
Number of brain regions C 16
Number of voxels V 50485
Number of fMRI scans T 220

• FastICA: Group PCA algorithm in GIFT software is used for di-
mension reduction. The number of independent components 
(IC) is set to 9 and 16 for simulated data and measured data, 
respectively. Then, the FastICA algorithm of GIFT software is 
used to separate the signals. The downloaded address is http://
trendscenter.org /trends /software /gift /index .html.

• SOBI: Group PCA algorithm is used to reduce the dimensions 
first. Its parameters are the same as FastICA. The delay τ is set 
to 1, 2, 3, and 4, respectively.

• GFS: Group PCA and the delay τ value is the same as that of 
the SOBI. The transformation matrix is from (6).

• GCS: Group PCA and the delay τ value is the same as that of 
SOBI and the cosine transform matrix is from (16) and (17).

This experiment uses running time to evaluate the computa-
tional complexity of each algorithm. In addition, the relative error 
δi and the average error ε are used to evaluate the separation per-
formance of each algorithm, which are defined as:

δi =
⎛
⎝V −1∑

j=0

∣∣ŝi j − si j
∣∣/ V −1∑

j=0

∣∣si j
∣∣
⎞
⎠ × 100% i = 0,1, ..C − 1 (19)

ε =
(

C−1∑
i=0

δi

)
/C, i = 0,1, ..C − 1 (20)

where ŝi j and si j are the i-th and j-th elements of the signal ma-
trix Ŝ and S, respectively and Ŝ are the estimated value of S.

5.2. Simulated data

This section gives the separation results for the data with two 
kinds of CNRs in Table 3. Fig. 5 shows the result for the simulated 
fMRI signals with lower CNR, where the expected brain maps and 
6

Fig. 6. The separation errors curves for nine simulated brain regions with lower 
CNR.

the separated maps by the algorithms are given, respectively. It can 
be seen from the figure that the brain regions separated by FastICA, 
GFS, and GCS can correspond to the expected ones. On the other 
hand, there are noises in brain regions 3, 4, 7, and 8 by SOBI. Espe-
cially, the brain region 7 is not consistent with the expected one. 
The results in Fig. 5 indicate that FastICA, GFS, and GCS have better 
separation performance than SOBI under lower CNR condition. It is 
also noted that the regions of some brain activations are smaller
than the expected ones, such as the regions 3 and 4 by GFS, but 
the locations of the strongest signals are consistent.

Fig. 6 shows the relative error of separated brain regions with 
lower CNR. As can be seen from Fig. 6, the error curves of SOBI are 
above the other algorithm curves, while GFS and GCS are between 
FastICA and SOBI curves. Further, we calculated the average error 
of the four algorithms. The errors are ranked from small to large 
as 10% of FastICA, 15% of GFS, 15% of GCS and 85% of SOBI. Al-
though the errors of GCS and GFS are slightly higher than FastICA 
by 5 percentages, they are much smaller than SOBI by 70 percent-
ages. The results in Fig. 5 show that the separation performance of 
the proposed algorithm at lower CNR is close to FastICA but much 
better than SOBI.

Fig. 7 also shows the separated result for the simulated fMRI 
signals with higher CNR.

Compared with the results in Fig. 5, SOBI has fewer noise in 
the separated brain regions, and its performance is close to GFS 
and GCS. Fig. 9 shows the results of the relative separation error 
with higher CNR. The error of SOBI is also close to GFS and GCS, 

http://trendscenter.org/trends/software/gift/index.html
http://trendscenter.org/trends/software/gift/index.html
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Fig. 7. Separation results for nine simulated brain regions with higher CNR, where the expected brain regions and the regions separated by FastICA, GFS, GCS, and SOBI are 
given, from top to bottom. All of the brain region signals are also normalized to 0-1, and the threshold of the brain regions 3 and 4 separated by GFS and GCS is also taken 
as 0.43 to eliminate the separation noise.
Fig. 8. The separation errors curves for nine simulated brain regions with higher 
CNR.

which is consistent with Fig. 7. The results in Fig. 7, Fig. 8 show 
that under higher CNR conditions, the separation performance of 
GFS, GCS, and SOBI is close.

Fig. 9 shows the running time for separation of the simulated 
data. It can be obtained from Fig. 9, the running time ranked from 
high to low is FastICA, GFS, GCS, and SOBI. Through calculation, 
the average running time is approximately 1.5, 0.05, 0.02, and 0.02 
seconds. It can be seen that the running time of GFS, GCS and 
SOBI is much shorter than FastICA and less than 1/30 of FastICA. 
And, the running time of GCS and SOBI is less than half of GFS.

Fig. 10 shows the statistics of the number of multiplications 
required to execute the four algorithms. It can be seen from the 
figure that the number of multiplications of FastICA, GFS, GCS and 
SOBI algorithm is about 4.10 million, 0.18 million, 0.14 million and 
0.13 million. The number of repeats of GFS and GCS includes the 
number of multiplications of statistics and the number of multi-
plications of transformations. It can be seen that the number of 
multiplications required to execute the GFS, GCS, and SOBI algo-
rithms is much smaller than that of the FastICA algorithm, while 
the number of multiplications of the GCS algorithm is slightly 
higher than that of the SOBI algorithm, but much lower than the 
GFS algorithm. These results are consistent with the simulated data 
in Fig. 9.
7

Fig. 9. The running time curves for separation of simulated data. In order to make 
the running time comparison of the four algorithms more obvious, logarithms were 
taken in the drawing.

Fig. 10. The number of multiplications performed by the four algorithms.

5.3. Measured data

This sub-section presents the results for the separated brain re-
gions of the measured data given in Table 4. According to literature 
[21], the fMRI measured data can be separated to 16 more relevant 
brain regions. Thus, we let the number of components in each al-
gorithm be 16. In order to clearly show the separation results for 
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Fig. 11. Brain area results of real data separated by each algorithm, where (A)-(D) correspond to FastICA, GFS, GCS and SOBI algorithms.

Fig. 12. The running time for separation of measured data, where (A) gives running time curves and (B) gives average running time histograms.
the algorithms, the TC curves about 16 separated brain regions is 
compared with an exogenous visual stimulation curve in the ex-
periment [21]. And then, we select two separated brain regions 
with higher correlation, the left and right regions of the primary 
visual cortex, which are respectively denoted by red and blue in 
Fig. 11. Also, the TC curves and seven axial slices about the two 
brain regions are given.

Comparing GFS and GCS with FastICA, we can see that the pri-
mary visual cortex separated by GFS and GCS can correspond to 
that by FastICA. And, there are fewer noises in the regions by GFS 
and GCS. On the other hand, there are many noisy points for SOBI. 
Only the right of the primary visual cortex in SOBI can correspond 
to that in FastICA, and the correspondence of the left area is not 
obvious. It is also noted that although there is a correspondence 
among the brain regions by GFS, GCS and FastICA, GCS’s region size 
decreased and GFS does not. The result shows that, the separation 
performance of GFS is closer to FastICA while SOBI is significantly 
different from FastICA. The performance from high to low should 
be FastICA, GFS, GCS, and SOBI.

Fig. 12 gives the running time of the algorithms for the mea-
sured data. In Fig. 12(A), the running time curves from high to 
low are FastICA, GFS, GCS and SOB. The order of the average time 
in Fig. 12(B) is consistent with Fig. 12(A), about 3.8, 0.8, 0.5, and 
8

0.1 seconds. It can be seen that the running time of GFS, GCS and 
SOBI is much shorter than FastICA, less than 1/4 of FastICA. And, 
the running time of GFS, GCS and SOBI is close, but the running 
time of GCS and SOBI is less than about 2/3 of GFS. These results 
are consistent with the simulated data in Fig. 11.

6. Discussion

For the blind source separation of fMRI sparse signals, this pa-
per uses inverse Fourier transform and inverse cosine transform 
to process the signals so that the signals are no longer in sparse 
form, and then are separated. The experimental results show that 
compared with the existing FastICA algorithm, the brain activations 
separated by the proposed method can correspond to those by Fas-
tICA while the proposed method’s running time is reduced very 
much. Compared with the existing SOBI algorithm, the proposed 
method’s running time has increased a little, but the separation 
error can be significantly reduced for the simulated data with low 
signal-to-noise ratio and the measured data. Although the pro-
posed method displays better performance, the following points 
need to be discussed further.

For the simulated data, first, the signals separated by FastICA, 
GFS, GCS, and SOBI all contain positive and negative parts. We only 
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consider the positive parts as activations. In fact, there are many 
noises in the separation regions of these three algorithms, but the 
noises are mainly concentrated in the negative parts. In the ex-
periment, therefore, we take the threshold 0 to remove most of 
the noises. Besides, some brain regions separated by GFS, GCS, and 
SOBI are still contains several low-brightness noise points. Taking 
appropriate thresholds on these brain areas will remove the noise 
points, e.g. the threshold of 0.43 for regions 3 and 4 in Fig. 5. 
However, this also causes the brain regions to become smaller. 
Considering the simulated data with lower CNR3, there still are 
some noise points in brain regions separated by SOBI when the 
threshold is set to 0.4. Thus, the threshold is still set to 0.

For the real measured data, this experiment uses the public 
data in GIFT software package of TReNDS laboratory. Strictly, more 
databases should be tried to get more convincing results. Since Fas-
tICA algorithm select this database to display its performance, the 
database can give a more intuitive result if we compare the pro-
posed method with FastICA.

7. Conclusion

Traditional fMRI brain region separation uses blind source sepa-
ration algorithms such as ICA, but this algorithm needs to compute 
high-order statistics, and the computational complexity is not low. 
To reduce the computational complexity, this paper proposes an 
inverse-sparse transform method to achieve the second-order blind 
separation of fMRI signals, which transforms sparse BOLD signals 
to an inverse-sparse domain and then compute the autocorrelation 
matrix to complete the separation. In order to further reduce the 
computational complexity, we also use a cosine transform to com-
plete a second-order inverse-sparse blind separation algorithm. In 
the experiments, we test both simulated and measured fMRI data. 
For the simulated fMRI data, when the noise is larger, i.e. CNR be-
tween 0.65 and 2, the separation error of the proposed GFS and 
GCS algorithms is 5 percentage points higher than FastICA, but the 
running time is only 1/30 and 1/60 of FastICA. For the measured 
fMRI data, the brain regions separated by GFS can correspond to 
those by FastICA. Although the brain regions separated by GCS can 
correspond to those by FastICA, the region size is reduced. In terms 
of running time, GFS and GCS is only 1/4 and 1/8 of FastICA.

The code for the GFS and GCS algorithms proposed in this ar-
ticle has been uploaded to GitHub, and its download address is 
https://github .com /monk5469 /GFS _GCS _fMRI.
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