
1534-4320 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

Citation information: DOI 10.1109/TNSRE.2018.2848463, 
IEEE Transactions on Neural Systems and Rehabilitation Engineering, VOL.26, NO.8, AUGUST 2018

 1516

 

Abstract—Spike sorting is one of key techniques to understand 
brain activity. With the development of modern electrophysiology 
technology, some recent multi-electrode technologies have been 
able to record the activity of thousands of neuronal spikes 
simultaneously. In this scenario, however, the recorded activity 
may be the overlap of multi-neuron spikes, which will degrade the 
sorting performance of existing cluster-based algorithms. In this 
paper, we introduce methods for overlapping spike sorting. The 
introduced methods start from a convolution model, where a 
sparse vector could be obtained via sparse coding or compressive 
sensing. Then, we use a maximum a posteriori (MAP) estimate to 
optimize the sparse vector, which make the overlapped spike 
sorting completed successfully.  The advantage of the introduced 
method is that, it performs better than traditional methods when 
the waveforms of the spikes are similar. In experiments, some 
synthetic and real spike data are used to testify the methods. The 
experiment results show that the introduced methods’ average 
sorting detection, defined as the ratio of successfully sorted spikes 
to the total spikes is nearly 4% higher than traditional methods, 
under the condition of the experimental data with similar 
waveforms. 

Index Terms—spike sorting; overlapping spike; sparse coding; 
compressive sensing  

I. INTRODUCTION 

euronal spikes are  basic units of a neural communication 
system. Neurons in a brain communicate with each other 

through the spikes. Hence, the study of neuron spikes is a key to 
understand brain activity. Spike sorting is a very important 
problem in neuroscience since the correct classification of 
different spikes means that the neurons that fire the different 
spikes would be distinguished. For example, spike sorting 
could distinguish the spike signals about memory from the 
spike signals about perception and learning [1].     

Usually, neuronal spikes are collected from electrodes [2]. 
The aim of spike sorting is to find when the spikes occur and 
which neuron the spikes belong to. For traditional sorting 
algorithms, cluster and various cluster-based algorithms are 
very popular [2]-[10] and have already played an important role. 
With the development of modern electrophysiology technology, 
however, the number of spikes simultaneously collected by 
electrodes increases dramatically. Now, the multi-electrode 
technology has been able to record the activity of thousands of 
neuronal spikes simultaneously [11], [12]. In this scenario, the 
recorded activity may be the overlap of multiple neuronal 
spikes. Moreover, the neurons are adjacent and thus their 
waveform may be similar. All of these will degrade the 
performance of the traditional cluster-based sorting algorithms 
[13-15], and bring many challenges to the sorting algorithms. 

Some new methods have been proposed to solve the 
overlapping spike sorting [8]-[12], [16]-[17]. Compared with 
the cluster-based algorithms, the new proposed methods 
enhance the performance of the overlapping spike sorting. 
However, the mthods for the overlapping spike are not yet well 
done under some condisitons, e.g. sorting under the condition 
that different sorts of spikes have similar waveforms. 

This paper introduces a sparse coding and a compressive 
sensing method for overlapping spike sorting. The sparse 
coding and compressive sensing are not new. Sparse coding 
could reduce the dimension and redundancy of observed data, 
and has been successfully applied to high-dimensional data 
classification with noise interference [18], [19]. Compressive 
sensing could map a signal to a low-dimensional space if the 
signal is compressible, and the signal could be reconstructed 
from a small of number of projections in the compressive 
signals [20]-[22].  

In this paper, however, we adopt the sparse expression of the 
two methods to sort overlapping spikes, instead of signal 
dimensional reduction. Both of the introduced sparse coding 
and compressive sensing are based on a convolution model [18], 
[23], where the overlap of multiple spikes could be expressed as 
a sum of the respective spike convolutions with a sparse signal. 
Through the sparse signal vector, then, an overlapping spike 
could be sorted. Besides, a posteriori (MAP) estimate is used to 
optimize the sparse vector for overlapping spike sorting. In 
experiments, some synthetic and real data are used to verify the 
introduced methods, and the methods are compared with the 
existing methods. The experimental results show that the 
number of sorting errors in the introduced methods is less than 
that in the traditional methods under the condition of 
overlapping spikes with similar waveforms. 

The rest of this paper is organized as follows. Section II 
describes related works. Section III gives a convolution model 
for overlapping spikes. Section IV introduces a sparse coding 
and compressive sensing method for overlapping spike sorting. 
In Section V, we provide experiment results to demonstrate the 
performance of the introduced methods. Finally, conclusions 
are drawn in Section VI. 

II.  RELATED WORK FOR OVERLAPPING SPIKE SORTING 

The earliest spike sorting method is matched filtering [24], 
which can identify a neuron spike from signals collected by a 
single electrode. The idea of matched filtering is to match the 
observed signal to a neuronal spike template. If the matched 
errors are not beyond a threshold, the matched spike would be 
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considered as the neuron’s spike.  Today, the matched filtering 
is still widely applied in single-cell electrophysiology [24]. 
When the observed signals are from multi-neuron signals 
collected by multi-electrodes, however, the method does not 
work well [25] because the observed signals may be from other 
neurons. In this case, the matched errors will occur and the 
threshold needs to be manual adjustment for better 
performance.  

A cluster method is a popular spike sorting method, which 
works better in the case of multi-neuron spikes collected by 
multiple electrodes. The cluster method usually involves three 
steps [3]. First, segment a raw signal into some chips 
containing spikes via threshold parameters, such as absolute 
values [26], square values [4] and Teager energy [27], or some 
nonlinear operators [28]. Second, extract the eigenvalues of the 
segmented spikes [2], [4], [5]. Third, cluster the extracted 
eigenvalues via some clustering method, such as k-means [3], 
superparamagnetic clustering (SPC) [2] and other hybrid 
cluster-based method [6, 13-15]. However, the performance of 
the cluster method will degrade when the overlap of spikes 
occurs [7]. The reason for this is that the eigenvalue point of an 
overlapped spike may have large Euclid distances from all of 
the centers of clusters. This will make the point discarded or 
misclassified.  

The misclassification for the overlapping spikes may lead to 
errors in some measurement results, e.g. neuronal firing rates 
[8], [25] and a correlation between a neuron and the activity of 
the neuron spike [29], [30]. With the development of 
multi-electrode array technology, especially, the activity of a 
large number of neuron spikes could be recorded 
simultaneously and the overlap of the spikes occurs frequently. 
Thus, sorting overlapping spikes correctly will become more 
important [16]. At present, there are several new proposed 
cluster-based methods to solve the overlapping spikes [8], [9]. 
Since the methods need to separate the overlapping spikes 
before sorting or greedily find the best fitting waveform for the 
overlap, their computational complexity increases with the 
number of overlapping neurons. As the number of neurons 
increases, their complexity would be unavailable.  

Independent Component Analysis (ICA) is a good idea 
because it adopts blind separation to sort overlapping spikes 
[31]. Unfortunately, its accuracy in overlapping spike sorting is 
not high. Continuous Basis Pursuit (CBP) [16], [32] is also a 
method for overlapping spike sorting. Since CBP algorithm has 
lower computational complexity and higher sorting accuracy, 
the algorithm has become one of the best sorting algorithms for 
overlapping spikes in the past two years. However, CBP still 
has some problems. When the waveforms of overlapping spikes 
are similar, the penalty of a cost function in CBP will increase 
with the amplitude of the waveforms and produce performance 
degradation. 

III. SYSTEM MODEL 

Before sorting spikes, we need to preprocess the raw voltage 
trace recorded by electrodes. The preprocessing steps are 
high-pass filtering, whitening and peaks detecting [8], [16]. 

After detecting the peaks, we find the time when the neuron 
fires an action potential. Then, the filtered and whiten voltage 
trace is segmented into some chips containing the peaks. The 
segmented spikes are just what we need to sort. If ( )v m  is 
denoted as the potential amplitude of the mth sampling point in 
a segmented spike, it could be expressed as [8], [16] 

              
1

J

j j
j

v m w m m n m 


          (1) 

where  
m{1, 2, ,M}, 
M denotes the length of the spike segment, 

( )jw m denotes the potential amplitude of the jth neural 
spike template at the mth point, 
( )   denotes a unit impulse function, 

  represents a convolution, 
J denotes the number of neurons, 

{ 1, 2, , }jn M M M      denotes the time shifted, 
( )m  is an additive noise. 

Eq. (1) means that an overlapped spike can be expressed as 
the sum of convolutions between several spike template signals 
and their respective time-shifted impulse functions, shown in 
Fig. 1. Note that the spike template signals ( )jw m  in (1) could 
be from the center of clusters via methods, e.g. k-means. For 
spikes collected from multiple electrodes, besides, we could 
constitute them one-by-one into a sequence signal. Here, we 
only give the case of a single electrode for simplified 
expression. 

IV. ALGORITHM  

A. Sparse Coding and Compressive Sensing Method  

As shown in last section, an overlapped spike is in fact the 
superposition of several time-shifted spike templates. Hence, 
the overlapped spike could be correctly sorted if we know 
which spikes are superposited. For this, we change (1) into a 
matrix form as 

 V WΔ ε                                       (2) 
where  

T[ (1), (2), , ( )]v v v MV                     (3) 







( )
j

j
n

k n  jw ( )t



 
Fig. 1. Spikes signal system model where an overlapped spike is the sum of 
convolutions between several spike template signals and their respective 
time-shifted impulse functions. 
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and  
T

ε(1),ε(2), ,ε( )Mε  . Since (1) represents 
convolutions between spike templates and impulse functions, 
the matrix W in (2) should be a Toeplitz matrix. Moreover, Δ 
is a vector composed of the unit impulse function ( )  . Hence, 
the vector Δ should be a sparse vector. Here, we will find a 
solution for Δ  through the method of sparse coding and 
compressive sensing. From the solution for Δ, what sort of 
spikes constitute the overlapped spike could be known and the 
classification would be completed.  

For this aim, we firstly establish the Toeplitz matrix W as 

1 2[ , , , ]JW W W W                         (4) 

where, 

     [ ( ), ( 1), , ( 1)]j j j j j j jr r s    W w w w           (5) 

T
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(6) 
From (4-6), the matrix jW is composed of several column 

vectors ( )j mw , m= jr , jr +1,  , js –1, which is from the 
jth neuronal spike template ( )jw m ,m=1,2,…,M through left 
or right time-shifted. Therefore, the Toeplitz matrix W could 
be obtained from J  time-shifted neuronal spike templates. 
Besides, jr  and js  represent the maximum left and right shifts, 
respectively. The choice for jr  and js is decided by the 
waveform amplitude of the spike templates and ensure

0 jr M  ,  0 js M  . Finally, the dimension of Wis 
M N  if j j ju r s  , N = 1

J
j ju . 

Next, we establish the sparse vector Δ . From (3-6), we have 
T T T T

1 2[ ( ), ( ), , ( )]Jn n nΔ δ δ δ              (7) 

where 

 
T

1 ( ) 1 ( 1 )

1

1[ ,1, ]   if .

                         otherwise.
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j
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

  
 
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0 0
δ

0
                                                                                                   

(8) 
From (1) and (7-8), the impulse function ( )jm n   of the 

jth neuron spike is changed into the vector  jnδ , where  only 
the  j jr n +1-th coefficient is 1 and the others are all 0. If 

 jnδ  is an all-zero vector, the overlapped spike will not 
contain the jth neuron spike. In addition, Δ  should be an 

1N  vector since  jnδ  is an 1ju   vector.  
From the analysis above, if we obtain the vector Δ from an 

overlapping spike, we will be able to know what sorts of spikes 
constitute the overlapped spike and how many shifts the spikes 
have. Thus, the overlapped spike would be sorted successfully. 
For example, if J =3, 1u = 2u = 3u  =5 and Δ = [01000  00000  
00010]T,  we will know that the overlapped signal is composed 
of the first sort of spike left-shifted by one bit and the third one 
right-shifted by one bit, respectively.  

Since an overlapped spike signal can be expressed as a 

TABLE 1 
ACTIVE-SET ALGORITHM FOR SPARSE CODING 

Algorithm steps 
Input: Segmented signal V 
Known parameter: Toeplitz matrix W . 
Computation 

T
  H W W , T

   g W V , 
where W  and V  are the corresponding Linear kernel mapping of W
and V , respectively.   
Output: sparse vector Δ̂ . 
Steps: 1.Initialization    

1



  
 Φ ΦX H g ,where  


X Y is defined 

that if 0iy  , then i i=x y ,otherwise 0ix  . In addition, ix  
represents the i-th elements of X . 

             0 ii x  ;  
             0 ii x  ; 
         Φ Φμ H X g ; 
          2. If 0R  and  min i i e   , where e is the convergence 

threshold, iteration from step 3 to step 8; otherwise, iteration 
completed and let ˆX Δ ;  

             3.  argmin i ij    
                   ;   j j     
             

1
;   


  t H g t 0  

             4. If min 0 t , iteration from step 5 to step 6; otherwise, 
iteration completed and jumping to step 7; 

          5.  min i i ix x t   ,where , 0 ii t  ; 
                  argmin i i ix x t  , where , 0 ii t  ; 
            ( )  X X t X ; 

;         ; 
   

1
;   


  t H g t 0 ; 

6.   Return to step 4; 
7.  ;    Φ ΦX t μ H X g ; 
8.   Return to step 2; 

 

TABLE 2 
BAYESIAN LAPLACE PRIOR ALGORITHM FOR COMPRESSIVE SENSING  

Algorithm steps 

Input: Segmented signal V . 
Known parameter: Toeplitz matrix W .  
Computation  

( | , , , ) ( | , )p N  X V γ X μ Σ                                   (T-1) 
where 

Tμ Σ W V                                               (T-2) 
                                 

1T


   Σ W W Λ                                       (T-3) 
        diag(1 )iΛ                                              (T-4) 

                            ( 1 2) / ( / 2 / 2)i iN                              (T-5) 
                           2

2 / 2N a b     V WX                  (T-6) 
                       ln( / 2) 1 ( / 2) ln 0                                 (T-7) 

1 1=T T T T
i i i i i i i i i i i i i i i iw w w w w w w w      

           C I I C   (T-8) 
                                      1T

i i i ip w w
 C                                                 (T-9) 

                                    1T
i i iq w 

 C V                                                (T-10) 

                 
2

2

( 2 )
     if 

 2

0                               otherwise

i i i
i i

i i i

p p p A
q p

p




 

  
 

 



       (T-11) 

                            1 2[ , , , ]N  γ   
                           iw  represents the ith column  of W , 
                              2   is the derivative of  ln 2 , 
                            2( 2 )iA p    24 ( )i ip q   . 
Output: sparse vector Δ̂ . 
Steps:   1. Initialization γ 0 , 0  .  

           2. If greater than a maximum number or smaller than a 
threshold, iteration completed and let ˆX Δ ; otherwise, 
iteration from step 3 to step 10;  

             3. Choose a i ,  1,i N . 
       4. If 2

i iq p    and 0i  , then add i  to the model. 
             5. If 2

i iq p    and 0i  , then re-estimate i via (T-11). 
             6. If 2

i iq p   , the ith column iw  in the W  is pruned and let
0i  . 

7. Update μ  and Σ  via (T-2) and (T-3), respectively. 
8. Update ip  and iq  via (T-9) and (T-10), respectively. 
9. Update , ,    from (T-5) to (T-7), respectively.  
10. Return to step 2. 
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Toeplitz matrix Wmultiplied by an impulse function vector Δ , 
i.e. a dictionary multiplied by a sparse signal, a solution for Δ  
will be changed into  

 2

2 1
ˆ arg min k  

X

Δ V - WX X                    (9) 

where k and   are both scale coefficients. For the solution 
in (9), we have the following schemes.  

(1) When the coefficients k=1/2,  =0 and the constraint 
condition 0X , the problem is actually a non-negative least 
squares (NNLS) sparse coding model. Table 1 gives an 
active-set algorithm for the sparse model [18], [33], [34].  

(2) When k=1, the equation is changed into a compressive 
sensing problem [20], [22], [23]. Table 2 gives a Laplace prior 
Bayesian algorithm [23] for the compressive sensing problem.  

B. MAP for Sorting 

If we obtain Δ̂  via Table 1 or 2, its expected form should be 
very sparse. For example, when an overlapped spike is from 
three neurons, an expected Δ̂  of the overlapped spike should 
have only three coefficients equal to 1 and the others all equal 
to 0. Likewise, Δ̂  should have only one coefficient equal to 1 
when the spike contains only one kind of spike. Due to noises 
and the Toeplitz matrix with not-full-column rank, however, Δ̂  
may have the following cases. First, the actual vector has more 
nonzero coefficients than the expected one. Second, a 
maximum coefficient may not be 1. Third, the location of the 
maximum coefficient 1 does not match the time shift of a spike 
template. To optimize the sparse vector, we use an MAP 
estimate as 

 arg max  ;
N

p



 
X

X V W                        (10) 

If the noise ε  in (2) is Gaussian with mean zero, taking 
logarithm for (10) will yield 

2

2
arg min

N





  
X

V WX                             (11) 

The key of solving (11) is to determine the search set
N . If 

we merely consider 
N  as an N-dimensional vector space, the 

search scope will be very large. Here, the results via sparse 
coding or compressed sensing algorithm could significantly 
narrow the search scope. Using the form of (8), the narrowed 
set is given by 

T
1 2{[ ( ), ( ), , ( )] | L , 1, 2, , }N

J j jl l l l j J   δ δ δ    

0 1L { , , , }I
j j j jl l l                           (12) 

where
i
jl , i =1, 2,  , I  denotes the shift corresponding to the 

location of the i th largest coefficient in ˆ (( 1) jj uΔ : )jju . 
Here, Δ̂ (m1:m2) represents a vector composed of the 
coefficients from the m1-th to m2-th in Δ̂ . And, we specify that 
if i =0, then ( jl δ 0 )jl  = 1 

ju 0 which corresponds that the 
overlapped spike vector Vdoes not have the j th neuron spike. 
Here, we give an example for the search set. If ˆ (( 1) jj uΔ :

)jju  is [0, 0.15, 1, 0.1, 0]T where ju =5, jr =2, js =3, I =3,  
then L j = { 0

jl , 0, -1, 1}. 
The set 

N in (12) is based on the following reasons. 
 (1) The vector ˆ (( 1) jj uΔ : )jju  may contain nonzero 

coefficients even if the overlapped spike does not have the j th 
neuron spike. Therefore, the set 

N will have the element 0
jl . 

(2) When an overlap spike has the j th neuron spike shifted 
by jn  , due to inferences or noises, the coefficient whose 
location corresponds to jn in ˆ (( 1) jj uΔ : )jju should be at 
least the I th largest though not the 1st largest.  Therefore, the 
cardinality of L j will be I +1. 

C. Computational Complexity and Algorithm Summary 

It is concluded from (12) that the number of searches for 
MAP is ( 1)JI  . When the number of neurons J  is fixed, the 
computational complexity will increase with I . If jI  is the 
number of nonzero coefficients in ˆ (( 1) jj uΔ : )jju , I  
could be chosen an integer between min { jI } and max{ jI }, 
j =1, 2,  , J , i.e.  

            min { jI }  I   max{ jI }, j =1, 2,  , J          (13) 

Since Δ̂  is a sparse vector, the search scope could not be large 
even though I chosen as max{ jI }. In practice, the value of 
I  could be determined via how to optimize the performance of 
spike sorting.  

Finally, we summarize the introduced spike sorting 
algorithm in Table 3.  

V. EXPERIMENT 

In this experiment, we use three groups of synthetic data and 
two groups of real data to verify our sparse coding and 
compressive sensing method. And, our methods are compared 
with the traditional k-means, CBP and SPC algorithm. In the 
five groups of data, there are three groups of data where the 
waveforms of spikes are more similar. Next, we will give the 
experimental results for the five groups of data, respectively. 

A. Synthetic data 

In this sub-section, three groups of synthetic data are used to 
verify the introduced methods and the traditional algorithms, 
and are denoted by C_Easy1_noise015, C_Difficult1_noise02 
and C_Difficult2_noise01, where the latter two groups have 
similar waveforms [2]. Their waveforms are from real 
environment and noises are chosen to be able to simulate 
realistic background activity. Some parameters in this 
experiment and the algorithms are shown in Table 4. More 
parameters for SPC could be found from [2] and a software, 
WaveClus version 2.0 downloaded from 

TABLE 3 
OVERLAPPING SPIKE SORTING ALGORITHM 

Algorithm steps 
1. A raw voltage trace is preprocessed, i.e. whitened, filtered, peaks 

detected and segmented into a number of signal chips containing the 
peaks. 

2. The eigenvalues of the signal segments are extracted through PCA 
and clustered into J clusters through k-means. Then, the centers of the 
clusters are used as J  spike templates (0)jw , j =1, 2, , J . 

3. The templates (0)jw , j =1, 2,  , J  time-shifted constitute a 
Toeplitz matrix W  in  (4). 

4. A sparse vector Δ̂  is obtained via sparse coding in Table 1 or 
compressive sensing in Table 2. 

5. An optimized sparse signals Δ  is estimated via MAP in (11), 
where a search scope is from a set Ω N in (12); 

6. Judge whether Δ ( ( 1) jj u : jju ) has a coefficient 1 or not. If it 
does, the segmented signal contains the spike of the j th neuron. 
Otherwise, the segment does not contain the spike. 

7. Repeat the step 4 to 6 until all signal segments are sorted. 
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https://vis.caltech.edu/~rodri/Wave_clus/Wave_clus_home.ht
m, and more parameters for CBP found in literature [16].  

Fig. 2 (a) shows the waveforms of three neuron spikes in the 
synthetic data C_Easy1_noise015. Fig. 2 (b) is a 
two-dimensional clustering figure where feature 1 and 2 are 
eigenvalues extracted from PCA. From the figure, there are 
three clusters. And, a number of points are far away from all 
center points of the three clusters. It could be verified that the 
points are indeed for some overlapped spikes.  

Table 5 gives sorting results for C_Easy1_noise015, 
C_Difficult1_noise02 and C_Difficult2_noise01 through five 
methods, sparse coding (denoted by SC), compressive sensing 
(denoted by CS), k-means, CBP and SPC, respectively. Except 
the parameters listed in Table 4, we specify some parameters 
for sparse coding and compressive sensing as follows. In sparse 
coding, a maximum left shift and right shift jr , js  of the 
Toeplitz matrix in (4-6) are set to jr = js =42, j=1,2,3 for 
C_Easy1_noise015, and  I in (27) is set to I=25. In compressive 
sensing, jr and js  are the same as in sparse coding, but I is set 
to I=1. For C_Difficult1_noise02 and C_Difficult2_noise01, 
sparse coding and compressive sensing have the similar values 

jr js  and I. We specify that, if the difference between spike 
time in experiment and ground truth is within 4ms, it will be 
concluded that the time in experiment and in ground truth 
match. When the true spike time is not found to match the 
experimental one, we regard it as “miss”. When the 
experimental one does not match the true one, on the other hand, 
we regard it as “false positive”. From the result of 
C_Easy1_noise015, the misses by SPC is the highest, arriving 

at 246 and those by k-means are also higher, arriving at 244. On 
the contrary, compressive sensing and CBP miss fewer spikes, 
both 13 and the fewest misses are for sparse coding. The reason 
why the misses by k-means and SPC are higher is that, 
clustering methods will make the eigenvalue point for an 
overlapped spike be far away from all centers of clusters. Note 
that, k-means and SPC use the same pre-processing method as 
CBP algorithm and our algorithm, such as whitening, filtering, 
and peak detection to eliminate the effect of different 
pre-processing. Finally, we can also see from the table that, the 
false positives by sparse coding and compressive sensing are 
both 10, slightly higher than 4 of CBP but not more than 1% of 
the total spikes. If we define the number of errors as a sum of 
misses and false positives, however, the number of errors by 
sparse coding is 17, the same as CBP.  

For the results of C_Difficult1_noise02 in Table 5, sparse 
coding’s false positives and classification errors are both fewer 
than CBP, and compressive sensing’s misses, false positives 
and classifications errors are all fewer than CBP. In addition, 
sparse coding and compressive sensing’s misses and 
classification errors are fewer than k-means and SPC. In Fig.3, 
we give the results of sorting detection (SD), which is defined 
as (%) 100*SD K T where K is the number of successfully 
sorted spikes and T is the total number of spikes fired by the 
intracellular recorded neuron. From the figure, compressive 
sensing’s SD for C_Difficult1_noise02 is higher than sparse 
coding, CBP, k-means and SPC. For the results of 
C_Difficult2_noise01 in Table 5, although sparse coding’s 
misses and false positives are slightly higher than CBP, 
compressive sensing’s misses and false positives are the same 
as CBP. Similarly, sparse coding and compressive sensing’s 
misses are lower than k-means and SPC. From the results of 

TABLE 4 
SOME PARAMETERS FOR SYNTHETIC DATA 

Parameter Value 

Number of neurons 
Number of channel 
 
Filtered 
 
Whiten 
Peaks detected  
 
Length of signal segment  
k-means  

Number of principal 
component 
Contribution rate of principal 
components 
Distance measure 
Clustering repeated 
Selection of initial centroid  

CBP algorithm 
Minimum length of a signal 
segment 
Maximum length of a signal 
segment 
Thresholds for identifying 
three different neurons 
The number of iterations 
The variance of noise 

Sparse coding 
Sparse coding method 
Prediction method 
Kernel function 
Sparsity threshold 

Compressive sensing  
Spike templates 
  
A threshold for termination 
Maximum iterations 

J=3 
1 
Cut-off frequency at 250 Hz with 
a Butterworth high pass filter of 
order 50. 
Whitened in time 
Mid-point-window method[16] and 
a threshold is 6 
M=81 
 
 
4 
 
90% 
Euclidean distance 
25 
3 centroid randomly selected 
 
 
81 
 
1001 
 
0.8871, 0.7065 and 0.5258 
200  
1 
 
Non-negative least squares 
k-nearest neighbor 
Linear  

410   
 
Clustering centroid via k-means 
Laplace priors 

810  
1000 times 

 

 
(a) spike waveform for C_Easy1_noise015    (b) clustering for C_Easy1_noise015 

 
(c) spike waveform for  harris_d533101       (d) clustering for harris_d533101 

 
(e) spike waveform for harris_d533101_v2   (f) clustering for harris_d533101_v2. 

 
Fig. 2 Spike waveform and clustering figure 
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C_Difficult2_noise01 in Fig.3, sparse coding and compressive 
sensing’s SD is similar to CBP, and higher than k-means and 
SPC. For the three groups of synthetic data, we also give the 
number of overlapped spikes and the ratio of misses to the 
overlapping (RMO) spikes in Table 5. From the table, 
Compressive Sensing’s average RMO is the slightly lower than 
CBP and Sparse coding’s average RMO is slightly higher than 
CBP, but both of them are much lower than k-means and SPC.  

Next, we analyze the impact of several key parameters on 
the performance of sparse coding and compressive sensing. Fig. 
4 shows results for the impact of I on sparse coding and 
compressive sensing, respectively. From C_Easy1_noise015 in 
sparse coding, we can see that the errors of spikes decrease with 
the value of I until I=25. When I  25, the errors are almost 
unchanged, always 17. From C_Easy1_noise015 in 
compressive sensing, the errors are the least when I=1 and 
increase with the value of I until I=13. Then, the errors are 
almost unchanged. The results show that, the performance of 
compressive sensing cannot be enhanced even if I increasing, 
but the performance of sparse coding can be enhanced. For the 
data C_Difficult1_noise02 and C_Difficult2_noise01, the value 
of I has similar impact on sparse coding and compressive 
sensing.  

Fig. 5 shows the impact of jr  and js  on the performance of 
sparse coding and compressive sensing, respectively. From 

C_Easy1_noise015 in sparse coding, the errors decrease from 
181 to 17, with the value of jr  and js  from about 50 to 42. 
Then, the errors will increase with jr  and js  from about 42 to 
18. From C_Easy1_noise015 in compressive sensing, the errors 
decrease from 47 to 23, with the value of jr  and js  from about 
50 to 40. Then, the errors will increase rapidly when jr  and js  
are below about 40. In addition, we can also see that the misses 
and false positives cannot arrive at the least value 
simultaneously whatever jr and js  are. Thus, the choice for 
the value of jr and js  may be only a compromise between the 
two performances. For the data C_Difficult1_noise02 and 
C_Difficult2_noise01, the values of jr  and js  have similar 
impact on the performance of sparse coding and compressive 
sensing. 

B. Electrode recording data in rat hippocampus 

In this sub-section, a group of real data are used to verify the 
introduced algorithms and the traditional algorithms. The data 
denoted by harris_d533101 are from CA1 region in 
anesthetized rat hippocampus [5]. The data recorded by 
electrodes are from the intracellular and extracellular, 
respectively. The intracellular is used as ground truth and the 
extracellular is used for test. Most parameters for 
harris_d533101 are the same as in Table 4 except some ones 
listed in Table 6. 

 Fig. 2 (c) shows the waveform of three neuron spikes in this 
data. It is seen from the figure that the peaks and shapes of the 
three spikes are also different. Fig. 2 (d) is a two-dimensional 
clustering figure for the data. From the figure, there are also 
three clusters and the points for overlapped spikes are far away 
from all centers of the clusters.  

Table 5 gives the results for sorting harris_d533101. There 
are some parameters not listed in Tables, which is specified as 
follows. A maximum left shift and right shift in sparse coding 

TABLE 6 
SOME PARAMETER FOR DATA HARRIS_D533101 

Parameter Value 

Number of channels 
Whiten 
Length of signal segment  
k-means  

No. of principal components 
CBP  

Thresholds for three neurons 

4 
Whitened in time and space. 
M=41 
 
74 
 
0.8194, 0.4806 and 0 

 

TABLE 5 
RESULTS OF SORTING SPIKE IN FIVE GROUPS OF DATA BY FIVE METHODS 

Experimental data 
SC CS k-means CBP SPC Number of 

Spikes 
Misses FP Misses FP Misses FP Misses FP Misses FP 

C_Easy1_noise015 7\0.94 10 13\1.7 10 244\32.8 2 13\1.7 4 246\33.0 4 3477//744/21.4 

harris_d533101 2 27 3 27 29 23 2 24 30 33 621 

harris_d533101_v2 48 53 48 54 83 48 121 26 90 62 777 

C_Difficult1_noise02 158\20.5 64 54/7 52 229\29.9 21 144\18.8 107 231\30.1 9 3414//767/22.5 

C_Difficult2_noise01 12\1.6 22 7\0.93 5 204\27.1 21 7\0.93 3 206\27.3 18 3462//754/21.8 

Average 45 35 25 30 158 23 57 33 161 25 2350 

Note: SC, CS and FP are denoted by sparse coding, compressive sensing and false positives, respectively. The notaitons of  \n, /n and //n is expressed as the 
ratio of misses to the overlapping spikes, the ratio of overlapping spikes to total spikes and the number of overlapping spikes, respectively.  
 

Fig. 3 SD (%) for three groups of similar-waveform data, harris_ 
d533101_v2, C_Difficult1_noise02 and C_Difficult2_noise01 
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are jr  =20, js  =19, j=1, 2, 3 and I=27. The parameters jr  
and js  in compressive sensing are consistent with sparse 
coding, but I=25. For this multi-channel data, we use the SPC 
public software to handle single channel data. Then, we choose 
the best performance of a channel from multiple channels in 
harris_d533101 as final experimental results. We can see from 
this group of data that, the misses by SPC is the highest, 
arriving at 30 and those by k-means are also higher, arriving at 
29. On the contrary, misses by compressive sensing is only 3, 
and both of sparse coding and CBP are 2. The reason for higher 
misses by k-means and SPC is still that they are cluster-based 
methods. In addition, sparse coding and compressive sensing 

have the same number of false positives, 27 slightly higher 
than 24 of CBP.  

Next, we analyze several parameters having the impact on 
the performance in this group of data. Fig. 4 shows the impact 
of I on the performance of sparse coding and compressive 
sensing, respectively. We can see from harris_d533101 in 
sparse coding that when I =27, the number of errors is the least, 
only 29. When I>27, the errors tend to be stable. From 
compressive sensing, the number of errors is the least when I 
=25, only 30. Then, the errors also tend to be stable. The results 
for this group of real data show that, the errors can be reduced 
through increasing I reasonably. However, an excessive large I 
could not always make the errors decrease.  

Fig. 5 gives the impact of jr  and js  on sparse coding and 
compressive sensing, respectively. From harris_d533101 in 
sparse coding, the errors decrease from about 900 to 29 of a 
minimum, with jr  and js  from 50 to about 21. Then, the 
errors will be almost unchanged even if jr  and js  decrease. 
From harris_d533101 in the compressive sensing, the errors 
decrease from about 700 to 30 of a minimum, with jr  and js  
from 50 to about 21. Then, the errors will be almost unchanged 
even if jr  and js  decrease. Similar with the synthetic data 
above, the results indicate that both of misses and false 
positives cannot arrive at a minimum simultaneously.  

C. Electrode recording data in locust 

In this sub-section, another real data are used to verify the 
introduced algorithms and the traditional algorithms in this 
section. The data denoted by harris_d533101_v2 are from 
locust in vivo [10] and also have the intracellular and the 
extracellular data. Most parameters for harris_d533101 _v2 
are consistent with of Table 4 and 6 except some ones listed in 
Table 7. 

Fig. 2 shows the waveforms of three neural spikes. From the 
figure, we can see that the shapes of the second and the third 
one are some similar except their widths. Fig. 2(f) shows a 
two-dimensional clustering figure for this data. There are also 
three clusters and some points far away from all of the cluster 
centers. From the figure, moreover, the cluster of the second 

neuron is closer to that of the third one due to their similar 
shapes[2, 16]. Hence, the points in the intersection of the two 
clusters may be difficult to be sorted correctly.  

Table 5 gives the results for sorting harris_d533101_v2. 
Some parameters unlisted in tables are as follows. The values of

jr , js  and I in sparse coding are set to jr  =19, js  =18, j=1, 2, 
3, and I =35, respectively. The parameters jr , js  in 
compressive sensing are the same as sparse coding but I=33. It 
is worth noting that the errors are significantly increased due to 
the similar waveforms. For SPC, we still chose a channel data 
performing the best. The misses by SPC are the highest, arrive 
at 90. And, the misses by CBP are 121, even higher than 83 of 

TABLE 7 
SOME PARAMETERS FOR DATA HARRIS_D533101_V2 

Parameter Value 

k-means  
Number of principal components  

CBP 
Thresholds for three neurons 

 
77 
 
0.8194, 0.7516 and 0 

 
 

(a) SC for data C_Easy1_noise015                 (b) SC for data harris_d533101 

 
(c) SC for data harris_d533101_v2                   (d) SC for data C_Difficult1_noise02 

 
(e)SC for data C_Difficult2_noise01              (f) CS for data C_Easy1_ noise015 

 
(g) CS for data harris_d533101                      (h) CS for data harris_d533101_v2 

  
(i) CS for data C_Difficult1_noise02                (j) CS for data C_Difficult2_noise01 
 
Fig. 4. Impact of I on the performance of sparse coding and compressive 
sensing.  
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k-means. On the contrary, misses by sparse coding and 
compressive sensing are the least, both 48. The reason why 
CBP performs worse is the similar waveforms of the two 
neuron spikes. On the other hand, the false positives by sparse 
coding or compressed sensing are some higher than the other 
three methods, but the sum of misses and positives are lower. 
Thus, from the three groups of similar-waveform data, 
harris_d533101_v2 C_Difficult1_noise02 and C_Difficult2_ 
noise01, the results of Table 5 and Fig. 3 show that two groups 
of data display higher classification performance of our 
algorithm and the other group display the same performance. 

Next, we give the impact of several parameters on the 
performance. Fig. 4 shows the change of I on performance of 
sparse coding and compressive sensing, respectively. From 
harris_d533101_v2 in sparse coding, the number of errors, 101 
is the least when I=35. From harris_d533101_v2 in 
compressive sensing, likewise, the number of errors, 102 is the 
least when I =33. For both of the two algorithms, it is seen that 
the errors tend to be stable even I increase from 27 to 37. The 
results show that an excessive large I could not always make the 
errors decrease. This is also consistent with the harris_d533101 
data.  

Fig. 5 shows the impact of jr  and js on the performance of 
sparse coding and compressive sensing, respectively. From 
harris_d533101_v2 in sparse coding, the errors decrease from 
about 1200 to about 100 of a minimum, with jr  and js  from 
about 50 to about 20. From harris_d533101_v2 in compressive 
sensing, the errors decrease from about 800 to about 100 of a 
minimum, with jr  and js  from about 50 to about 20. Similar 
with the previous two data, both of misses and false positives 
cannot arrive at a minimum simultaneously.  

D. Analysis for some parameters 

From the results above, the value of I has an impact on the 
performance of sparse coding and compressive sensing, and an 
excessive large or an excessive small I cannot produce an 
optimal sorting performance. The former will increase the 
computational complexity and could not always have better 
spike identification. On the other hand, the latter will result in 
more sorting errors.  

In addition, the establishment of a dictionary i.e. a 
measurement Toeplitz matrix also has an impact on the results. 
Likewise, excessive large or small shifts, jr and js  are not 
good candidates for sorting spikes.  All of the groups of data 

a

 
(a) Data C_Easy1_noise015 

b

 
(b) Data harris_d533101 

c

(c) Data harris_d533101_v2 

d

(d) Data C_Difficult1_noise02 

e

(e) Data C_Difficult2_noise01 
 
Fig. 5 Impact of maximum right shift and left shift on the performance of sparse coding and compressive sensing. 
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could indicate this point.  

VI. CONCLUSION 

This paper intorduces a sparse coding and a compressive 
sensing method to solve a problem for overlapped spike sorting. 
The introduced methods start from a convolutional model, 
where a Toeplitz matrix is established from several spike 
templates time-shifted. The spike templates could be obtained 
via the centroids of clusters in traditional k-means algorithm. 
Through a dictionary i.e. the Toeplitz matrix, sparse coding or 
compressive sensing yields a sparse vector. Further, MAP will 
optimize the sparse vector, through which an overlapped spike 
sorting is completed. 

In the experiments above, three groups of synthetic and two 
groups of real data are used to testify the introduced and 
traditional methods. From the experimental results, the 
introduced method’s average sorting detection is nearly 4% 
higher than traditional methods for the three groups of data with 
similar spike waveforms. On the other hand, the introduced and 
traditional methods have similar sorting performance for the 
other two groups of data with different waveforms. This 
indicates that our algorithm has some advantages in 
classification when the waveforms of neuron spikes are similar. 

Although our methods have better sorting performance for 
the overlapped spikes with similar waveforms, some 
improvement needs to be done. For example, when a Toeplitz 
matrix is established, we need to choose a maximum right shift 
and left shift which have an important impact on the 
performance of sorting spike. How to choose reasonable values 
will be a key technique. One of feasible solutions is that, we 
first choose a group of training data and then try several values 
of the maximum shift in the training data. Thus, each shift value 
will have a classification result, and the value of shift 
corresponding to the best classification result would be an 
optimal value. 
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