
1534-4320 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

Citation information: DOI 10.1109/TNSRE.2018.2848463,
IEEE Transactions on Neural Systems and Rehabilitation Engineering, VOL.26, NO.8, AUGUST 2018

 1516

Abstract—Spike sorting is one of key techniques to understand
brain activity. With the development of modern electrophysiology
technology, some recent multi-electrode technologies have been
able to record the activity of thousands of neuronal spikes
simultaneously. In this scenario, however, the recorded activity
may be the overlap of multi-neuron spikes, which will degrade the
sorting performance of existing cluster-based algorithms. In this
paper, we introduce methods for overlapping spike sorting. The
introduced methods start from a convolution model, where a
sparse vector could be obtained via sparse coding or compressive
sensing. Then, we use a maximum a posteriori (MAP) estimate to
optimize the sparse vector, which make the overlapped spike
sorting completed successfully. The advantage of the introduced
method is that, it performs better than traditional methods when
the waveforms of the spikes are similar. In experiments, some
synthetic and real spike data are used to testify the methods. The
experiment results show that the introduced methods’ average
sorting detection, defined as the ratio of successfully sorted spikes
to the total spikes is nearly 4% higher than traditional methods,
under the condition of the experimental data with similar
waveforms.

Index Terms—spike sorting; overlapping spike; sparse coding;
compressive sensing

I. INTRODUCTION

euronal spikes are basic units of a neural communication
system. Neurons in a brain communicate with each other

through the spikes. Hence, the study of neuron spikes is a key to
understand brain activity. Spike sorting is a very important
problem in neuroscience since the correct classification of
different spikes means that the neurons that fire the different
spikes would be distinguished. For example, spike sorting
could distinguish the spike signals about memory from the
spike signals about perception and learning [1].

Usually, neuronal spikes are collected from electrodes [2].
The aim of spike sorting is to find when the spikes occur and
which neuron the spikes belong to. For traditional sorting
algorithms, cluster and various cluster-based algorithms are
very popular [2]-[10] and have already played an important role.
With the development of modern electrophysiology technology,
however, the number of spikes simultaneously collected by
electrodes increases dramatically. Now, the multi-electrode
technology has been able to record the activity of thousands of
neuronal spikes simultaneously [11], [12]. In this scenario, the
recorded activity may be the overlap of multiple neuronal
spikes. Moreover, the neurons are adjacent and thus their
waveform may be similar. All of these will degrade the
performance of the traditional cluster-based sorting algorithms
[13-15], and bring many challenges to the sorting algorithms.

Some new methods have been proposed to solve the
overlapping spike sorting [8]-[12], [16]-[17]. Compared with
the cluster-based algorithms, the new proposed methods
enhance the performance of the overlapping spike sorting.
However, the mthods for the overlapping spike are not yet well
done under some condisitons, e.g. sorting under the condition
that different sorts of spikes have similar waveforms.

This paper introduces a sparse coding and a compressive
sensing method for overlapping spike sorting. The sparse
coding and compressive sensing are not new. Sparse coding
could reduce the dimension and redundancy of observed data,
and has been successfully applied to high-dimensional data
classification with noise interference [18], [19]. Compressive
sensing could map a signal to a low-dimensional space if the
signal is compressible, and the signal could be reconstructed
from a small of number of projections in the compressive
signals [20]-[22].

In this paper, however, we adopt the sparse expression of the
two methods to sort overlapping spikes, instead of signal
dimensional reduction. Both of the introduced sparse coding
and compressive sensing are based on a convolution model [18],
[23], where the overlap of multiple spikes could be expressed as
a sum of the respective spike convolutions with a sparse signal.
Through the sparse signal vector, then, an overlapping spike
could be sorted. Besides, a posteriori (MAP) estimate is used to
optimize the sparse vector for overlapping spike sorting. In
experiments, some synthetic and real data are used to verify the
introduced methods, and the methods are compared with the
existing methods. The experimental results show that the
number of sorting errors in the introduced methods is less than
that in the traditional methods under the condition of
overlapping spikes with similar waveforms.

The rest of this paper is organized as follows. Section II
describes related works. Section III gives a convolution model
for overlapping spikes. Section IV introduces a sparse coding
and compressive sensing method for overlapping spike sorting.
In Section V, we provide experiment results to demonstrate the
performance of the introduced methods. Finally, conclusions
are drawn in Section VI.

II. RELATED WORK FOR OVERLAPPING SPIKE SORTING

The earliest spike sorting method is matched filtering [24],
which can identify a neuron spike from signals collected by a
single electrode. The idea of matched filtering is to match the
observed signal to a neuronal spike template. If the matched
errors are not beyond a threshold, the matched spike would be

Sparse Coding and Compressive Sensing for
Overlapping Neural Spike Sorting

Haifeng Wu, Kai Yang and Yu Zeng

N

1534-4320 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

Citation information: DOI 10.1109/TNSRE.2018.2848463,
IEEE Transactions on Neural Systems and Rehabilitation Engineering, VOL.26, NO.8, AUGUST 2018

 1517

considered as the neuron’s spike. Today, the matched filtering
is still widely applied in single-cell electrophysiology [24].
When the observed signals are from multi-neuron signals
collected by multi-electrodes, however, the method does not
work well [25] because the observed signals may be from other
neurons. In this case, the matched errors will occur and the
threshold needs to be manual adjustment for better
performance.

A cluster method is a popular spike sorting method, which
works better in the case of multi-neuron spikes collected by
multiple electrodes. The cluster method usually involves three
steps [3]. First, segment a raw signal into some chips
containing spikes via threshold parameters, such as absolute
values [26], square values [4] and Teager energy [27], or some
nonlinear operators [28]. Second, extract the eigenvalues of the
segmented spikes [2], [4], [5]. Third, cluster the extracted
eigenvalues via some clustering method, such as k-means [3],
superparamagnetic clustering (SPC) [2] and other hybrid
cluster-based method [6, 13-15]. However, the performance of
the cluster method will degrade when the overlap of spikes
occurs [7]. The reason for this is that the eigenvalue point of an
overlapped spike may have large Euclid distances from all of
the centers of clusters. This will make the point discarded or
misclassified.

The misclassification for the overlapping spikes may lead to
errors in some measurement results, e.g. neuronal firing rates
[8], [25] and a correlation between a neuron and the activity of
the neuron spike [29], [30]. With the development of
multi-electrode array technology, especially, the activity of a
large number of neuron spikes could be recorded
simultaneously and the overlap of the spikes occurs frequently.
Thus, sorting overlapping spikes correctly will become more
important [16]. At present, there are several new proposed
cluster-based methods to solve the overlapping spikes [8], [9].
Since the methods need to separate the overlapping spikes
before sorting or greedily find the best fitting waveform for the
overlap, their computational complexity increases with the
number of overlapping neurons. As the number of neurons
increases, their complexity would be unavailable.

Independent Component Analysis (ICA) is a good idea
because it adopts blind separation to sort overlapping spikes
[31]. Unfortunately, its accuracy in overlapping spike sorting is
not high. Continuous Basis Pursuit (CBP) [16], [32] is also a
method for overlapping spike sorting. Since CBP algorithm has
lower computational complexity and higher sorting accuracy,
the algorithm has become one of the best sorting algorithms for
overlapping spikes in the past two years. However, CBP still
has some problems. When the waveforms of overlapping spikes
are similar, the penalty of a cost function in CBP will increase
with the amplitude of the waveforms and produce performance
degradation.

III. SYSTEM MODEL

Before sorting spikes, we need to preprocess the raw voltage
trace recorded by electrodes. The preprocessing steps are
high-pass filtering, whitening and peaks detecting [8], [16].

After detecting the peaks, we find the time when the neuron
fires an action potential. Then, the filtered and whiten voltage
trace is segmented into some chips containing the peaks. The
segmented spikes are just what we need to sort. If ()v m is
denoted as the potential amplitude of the mth sampling point in
a segmented spike, it could be expressed as [8], [16]

        
1

J

j j
j

v m w m m n m 


    (1)

where
m{1, 2, ,M},
M denotes the length of the spike segment,

()jw m denotes the potential amplitude of the jth neural
spike template at the mth point,
()  denotes a unit impulse function,

 represents a convolution,
J denotes the number of neurons,

{ 1, 2, , }jn M M M      denotes the time shifted,
()m is an additive noise.

Eq. (1) means that an overlapped spike can be expressed as
the sum of convolutions between several spike template signals
and their respective time-shifted impulse functions, shown in
Fig. 1. Note that the spike template signals ()jw m in (1) could
be from the center of clusters via methods, e.g. k-means. For
spikes collected from multiple electrodes, besides, we could
constitute them one-by-one into a sequence signal. Here, we
only give the case of a single electrode for simplified
expression.

IV. ALGORITHM

A. Sparse Coding and Compressive Sensing Method

As shown in last section, an overlapped spike is in fact the
superposition of several time-shifted spike templates. Hence,
the overlapped spike could be correctly sorted if we know
which spikes are superposited. For this, we change (1) into a
matrix form as

 V WΔ ε (2)
where

T[(1), (2), , ()]v v v MV  (3)







()
j

j
n

k n  jw ()t



Fig. 1. Spikes signal system model where an overlapped spike is the sum of
convolutions between several spike template signals and their respective
time-shifted impulse functions.

1534-4320 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

Citation information: DOI 10.1109/TNSRE.2018.2848463
IEEE Transactions on Neural Systems and Rehabilitation Engineering

 1518

and  
T

ε(1),ε(2), ,ε()Mε  . Since (1) represents
convolutions between spike templates and impulse functions,
the matrix W in (2) should be a Toeplitz matrix. Moreover, Δ
is a vector composed of the unit impulse function ()  . Hence,
the vector Δ should be a sparse vector. Here, we will find a
solution for Δ through the method of sparse coding and
compressive sensing. From the solution for Δ, what sort of
spikes constitute the overlapped spike could be known and the
classification would be completed.

For this aim, we firstly establish the Toeplitz matrix W as

1 2[, , ,]JW W W W (4)

where,

 [(), (1), , (1)]j j j j j j jr r s    W w w w (5)

T

1

T

1 ()

, (1), (2), , ()

if 0 1
()

(1), (2), , (),

if 1

m j j j

j

j

j j j m

j

w w w M m

m s
m

w m w m w M

r m



 

   
   

 
     


  

0

w
0





(6)
From (4-6), the matrix jW is composed of several column

vectors ()j mw , m= jr , jr +1,  , js –1, which is from the
jth neuronal spike template ()jw m ,m=1,2,…,M through left
or right time-shifted. Therefore, the Toeplitz matrix W could
be obtained from J time-shifted neuronal spike templates.
Besides, jr and js represent the maximum left and right shifts,
respectively. The choice for jr and js is decided by the
waveform amplitude of the spike templates and ensure

0 jr M  , 0 js M  . Finally, the dimension of Wis
M N if j j ju r s  , N = 1

J
j ju .

Next, we establish the sparse vector Δ . From (3-6), we have
T T T T

1 2[(), (), , ()]Jn n nΔ δ δ δ (7)

where

 
T

1 () 1 (1)

1

1[,1,] if .

 otherwise.

j j j j

j

r n s n

j

u

r n s
j j j

n
    



  
 


0 0
δ

0

(8)
From (1) and (7-8), the impulse function ()jm n  of the

jth neuron spike is changed into the vector  jnδ , where only
the j jr n +1-th coefficient is 1 and the others are all 0. If

 jnδ is an all-zero vector, the overlapped spike will not
contain the jth neuron spike. In addition, Δ should be an

1N vector since  jnδ is an 1ju  vector.
From the analysis above, if we obtain the vector Δ from an

overlapping spike, we will be able to know what sorts of spikes
constitute the overlapped spike and how many shifts the spikes
have. Thus, the overlapped spike would be sorted successfully.
For example, if J =3, 1u = 2u = 3u =5 and Δ = [01000 00000
00010]T, we will know that the overlapped signal is composed
of the first sort of spike left-shifted by one bit and the third one
right-shifted by one bit, respectively.

Since an overlapped spike signal can be expressed as a

TABLE 1
ACTIVE-SET ALGORITHM FOR SPARSE CODING

Algorithm steps
Input: Segmented signal V
Known parameter: Toeplitz matrix W .
Computation

T
  H W W , T

   g W V ,
where W and V are the corresponding Linear kernel mapping of W
and V , respectively.
Output: sparse vector Δ̂ .
Steps: 1.Initialization    

1



  
 Φ ΦX H g ,where  


X Y is defined

that if 0iy  , then i i=x y ,otherwise 0ix  . In addition, ix
represents the i-th elements of X .

  0 ii x  ;
  0 ii x  ;
  Φ Φμ H X g ;
 2. If 0R and  min i i e   , where e is the convergence

threshold, iteration from step 3 to step 8; otherwise, iteration
completed and let ˆX Δ ;

 3.  argmin i ij 
    ;   j j   
    

1
;   


  t H g t 0

 4. If min 0 t , iteration from step 5 to step 6; otherwise,
iteration completed and jumping to step 7;

 5.  min i i ix x t   ,where , 0 ii t  ;
  argmin i i ix x t  , where , 0 ii t  ;
 ()  X X t X ;

;         ;
   

1
;   


  t H g t 0 ;

6. Return to step 4;
7. ;   Φ ΦX t μ H X g ;
8. Return to step 2;

TABLE 2
BAYESIAN LAPLACE PRIOR ALGORITHM FOR COMPRESSIVE SENSING

Algorithm steps

Input: Segmented signal V .
Known parameter: Toeplitz matrix W .
Computation

(| , , ,) (| ,)p N  X V γ X μ Σ (T-1)
where

Tμ Σ W V (T-2)

1T


   Σ W W Λ (T-3)
 diag(1)iΛ (T-4)

 (1 2) / (/ 2 / 2)i iN        (T-5)
    2

2 / 2N a b     V WX (T-6)
 ln(/ 2) 1 (/ 2) ln 0         (T-7)

1 1=T T T T
i i i i i i i i i i i i i i i iw w w w w w w w      

           C I I C (T-8)
 1T

i i i ip w w
 C (T-9)

 1T
i i iq w 

 C V (T-10)

2

2

(2)
 if

 2

0 otherwise

i i i
i i

i i i

p p p A
q p

p




 

  
 

 



 (T-11)

 1 2[, , ,]N  γ 
 iw represents the ith column of W ,
  2  is the derivative of  ln 2 ,
 2(2)iA p    24 ()i ip q   .
Output: sparse vector Δ̂ .
Steps: 1. Initialization γ 0 , 0  .

 2. If greater than a maximum number or smaller than a
threshold, iteration completed and let ˆX Δ ; otherwise,
iteration from step 3 to step 10;

 3. Choose a i ,  1,i N .
 4. If 2

i iq p   and 0i  , then add i to the model.
 5. If 2

i iq p   and 0i  , then re-estimate i via (T-11).
 6. If 2

i iq p   , the ith column iw in the W is pruned and let
0i  .

7. Update μ and Σ via (T-2) and (T-3), respectively.
8. Update ip and iq via (T-9) and (T-10), respectively.
9. Update , ,   from (T-5) to (T-7), respectively.
10. Return to step 2.

1534-4320 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

Citation information: DOI 10.1109/TNSRE.2018.2848463
IEEE Transactions on Neural Systems and Rehabilitation Engineering

 1519

Toeplitz matrix Wmultiplied by an impulse function vector Δ ,
i.e. a dictionary multiplied by a sparse signal, a solution for Δ
will be changed into

 2

2 1
ˆ arg min k  

X

Δ V - WX X (9)

where k and  are both scale coefficients. For the solution
in (9), we have the following schemes.

(1) When the coefficients k=1/2,  =0 and the constraint
condition 0X , the problem is actually a non-negative least
squares (NNLS) sparse coding model. Table 1 gives an
active-set algorithm for the sparse model [18], [33], [34].

(2) When k=1, the equation is changed into a compressive
sensing problem [20], [22], [23]. Table 2 gives a Laplace prior
Bayesian algorithm [23] for the compressive sensing problem.

B. MAP for Sorting

If we obtain Δ̂ via Table 1 or 2, its expected form should be
very sparse. For example, when an overlapped spike is from
three neurons, an expected Δ̂ of the overlapped spike should
have only three coefficients equal to 1 and the others all equal
to 0. Likewise, Δ̂ should have only one coefficient equal to 1
when the spike contains only one kind of spike. Due to noises
and the Toeplitz matrix with not-full-column rank, however, Δ̂
may have the following cases. First, the actual vector has more
nonzero coefficients than the expected one. Second, a
maximum coefficient may not be 1. Third, the location of the
maximum coefficient 1 does not match the time shift of a spike
template. To optimize the sparse vector, we use an MAP
estimate as

 arg max ;
N

p



 
X

X V W (10)

If the noise ε in (2) is Gaussian with mean zero, taking
logarithm for (10) will yield

2

2
arg min

N





  
X

V WX (11)

The key of solving (11) is to determine the search set
N . If

we merely consider
N as an N-dimensional vector space, the

search scope will be very large. Here, the results via sparse
coding or compressed sensing algorithm could significantly
narrow the search scope. Using the form of (8), the narrowed
set is given by

T
1 2{[(), (), , ()] | L , 1, 2, , }N

J j jl l l l j J   δ δ δ 

0 1L { , , , }I
j j j jl l l  (12)

where
i
jl , i =1, 2,  , I denotes the shift corresponding to the

location of the i th largest coefficient in ˆ ((1) jj uΔ :)jju .
Here, Δ̂ (m1:m2) represents a vector composed of the
coefficients from the m1-th to m2-th in Δ̂ . And, we specify that
if i =0, then (jl δ 0)jl = 1

ju 0 which corresponds that the
overlapped spike vector Vdoes not have the j th neuron spike.
Here, we give an example for the search set. If ˆ ((1) jj uΔ :

)jju is [0, 0.15, 1, 0.1, 0]T where ju =5, jr =2, js =3, I =3,
then L j = { 0

jl , 0, -1, 1}.
The set

N in (12) is based on the following reasons.
 (1) The vector ˆ ((1) jj uΔ :)jju may contain nonzero

coefficients even if the overlapped spike does not have the j th
neuron spike. Therefore, the set

N will have the element 0
jl .

(2) When an overlap spike has the j th neuron spike shifted
by jn , due to inferences or noises, the coefficient whose
location corresponds to jn in ˆ ((1) jj uΔ :)jju should be at
least the I th largest though not the 1st largest. Therefore, the
cardinality of L j will be I +1.

C. Computational Complexity and Algorithm Summary

It is concluded from (12) that the number of searches for
MAP is (1)JI  . When the number of neurons J is fixed, the
computational complexity will increase with I . If jI is the
number of nonzero coefficients in ˆ ((1) jj uΔ :)jju , I
could be chosen an integer between min { jI } and max{ jI },
j =1, 2,  , J , i.e.

 min { jI }  I  max{ jI }, j =1, 2,  , J (13)

Since Δ̂ is a sparse vector, the search scope could not be large
even though I chosen as max{ jI }. In practice, the value of
I could be determined via how to optimize the performance of
spike sorting.

Finally, we summarize the introduced spike sorting
algorithm in Table 3.

V. EXPERIMENT

In this experiment, we use three groups of synthetic data and
two groups of real data to verify our sparse coding and
compressive sensing method. And, our methods are compared
with the traditional k-means, CBP and SPC algorithm. In the
five groups of data, there are three groups of data where the
waveforms of spikes are more similar. Next, we will give the
experimental results for the five groups of data, respectively.

A. Synthetic data

In this sub-section, three groups of synthetic data are used to
verify the introduced methods and the traditional algorithms,
and are denoted by C_Easy1_noise015, C_Difficult1_noise02
and C_Difficult2_noise01, where the latter two groups have
similar waveforms [2]. Their waveforms are from real
environment and noises are chosen to be able to simulate
realistic background activity. Some parameters in this
experiment and the algorithms are shown in Table 4. More
parameters for SPC could be found from [2] and a software,
WaveClus version 2.0 downloaded from

TABLE 3
OVERLAPPING SPIKE SORTING ALGORITHM

Algorithm steps
1. A raw voltage trace is preprocessed, i.e. whitened, filtered, peaks

detected and segmented into a number of signal chips containing the
peaks.

2. The eigenvalues of the signal segments are extracted through PCA
and clustered into J clusters through k-means. Then, the centers of the
clusters are used as J spike templates (0)jw , j =1, 2, , J .

3. The templates (0)jw , j =1, 2,  , J time-shifted constitute a
Toeplitz matrix W in (4).

4. A sparse vector Δ̂ is obtained via sparse coding in Table 1 or
compressive sensing in Table 2.

5. An optimized sparse signals Δ is estimated via MAP in (11),
where a search scope is from a set Ω N in (12);

6. Judge whether Δ ((1) jj u : jju) has a coefficient 1 or not. If it
does, the segmented signal contains the spike of the j th neuron.
Otherwise, the segment does not contain the spike.

7. Repeat the step 4 to 6 until all signal segments are sorted.

1534-4320 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

 Citation information: DOI 10.1109/TNSRE.2018.2848463
IEEE Transactions on Neural Systems and Rehabilitation Engineering

 1520

https://vis.caltech.edu/~rodri/Wave_clus/Wave_clus_home.ht
m, and more parameters for CBP found in literature [16].

Fig. 2 (a) shows the waveforms of three neuron spikes in the
synthetic data C_Easy1_noise015. Fig. 2 (b) is a
two-dimensional clustering figure where feature 1 and 2 are
eigenvalues extracted from PCA. From the figure, there are
three clusters. And, a number of points are far away from all
center points of the three clusters. It could be verified that the
points are indeed for some overlapped spikes.

Table 5 gives sorting results for C_Easy1_noise015,
C_Difficult1_noise02 and C_Difficult2_noise01 through five
methods, sparse coding (denoted by SC), compressive sensing
(denoted by CS), k-means, CBP and SPC, respectively. Except
the parameters listed in Table 4, we specify some parameters
for sparse coding and compressive sensing as follows. In sparse
coding, a maximum left shift and right shift jr , js of the
Toeplitz matrix in (4-6) are set to jr = js =42, j=1,2,3 for
C_Easy1_noise015, and I in (27) is set to I=25. In compressive
sensing, jr and js are the same as in sparse coding, but I is set
to I=1. For C_Difficult1_noise02 and C_Difficult2_noise01,
sparse coding and compressive sensing have the similar values

jr js and I. We specify that, if the difference between spike
time in experiment and ground truth is within 4ms, it will be
concluded that the time in experiment and in ground truth
match. When the true spike time is not found to match the
experimental one, we regard it as “miss”. When the
experimental one does not match the true one, on the other hand,
we regard it as “false positive”. From the result of
C_Easy1_noise015, the misses by SPC is the highest, arriving

at 246 and those by k-means are also higher, arriving at 244. On
the contrary, compressive sensing and CBP miss fewer spikes,
both 13 and the fewest misses are for sparse coding. The reason
why the misses by k-means and SPC are higher is that,
clustering methods will make the eigenvalue point for an
overlapped spike be far away from all centers of clusters. Note
that, k-means and SPC use the same pre-processing method as
CBP algorithm and our algorithm, such as whitening, filtering,
and peak detection to eliminate the effect of different
pre-processing. Finally, we can also see from the table that, the
false positives by sparse coding and compressive sensing are
both 10, slightly higher than 4 of CBP but not more than 1% of
the total spikes. If we define the number of errors as a sum of
misses and false positives, however, the number of errors by
sparse coding is 17, the same as CBP.

For the results of C_Difficult1_noise02 in Table 5, sparse
coding’s false positives and classification errors are both fewer
than CBP, and compressive sensing’s misses, false positives
and classifications errors are all fewer than CBP. In addition,
sparse coding and compressive sensing’s misses and
classification errors are fewer than k-means and SPC. In Fig.3,
we give the results of sorting detection (SD), which is defined
as (%) 100*SD K T where K is the number of successfully
sorted spikes and T is the total number of spikes fired by the
intracellular recorded neuron. From the figure, compressive
sensing’s SD for C_Difficult1_noise02 is higher than sparse
coding, CBP, k-means and SPC. For the results of
C_Difficult2_noise01 in Table 5, although sparse coding’s
misses and false positives are slightly higher than CBP,
compressive sensing’s misses and false positives are the same
as CBP. Similarly, sparse coding and compressive sensing’s
misses are lower than k-means and SPC. From the results of

TABLE 4
SOME PARAMETERS FOR SYNTHETIC DATA

Parameter Value

Number of neurons
Number of channel

Filtered

Whiten
Peaks detected

Length of signal segment
k-means

Number of principal
component
Contribution rate of principal
components
Distance measure
Clustering repeated
Selection of initial centroid

CBP algorithm
Minimum length of a signal
segment
Maximum length of a signal
segment
Thresholds for identifying
three different neurons
The number of iterations
The variance of noise

Sparse coding
Sparse coding method
Prediction method
Kernel function
Sparsity threshold

Compressive sensing
Spike templates

A threshold for termination
Maximum iterations

J=3
1
Cut-off frequency at 250 Hz with
a Butterworth high pass filter of
order 50.
Whitened in time
Mid-point-window method[16] and
a threshold is 6
M=81

4

90%
Euclidean distance
25
3 centroid randomly selected

81

1001

0.8871, 0.7065 and 0.5258
200
1

Non-negative least squares
k-nearest neighbor
Linear

410

Clustering centroid via k-means
Laplace priors

810
1000 times

(a) spike waveform for C_Easy1_noise015 (b) clustering for C_Easy1_noise015

(c) spike waveform for harris_d533101 (d) clustering for harris_d533101

(e) spike waveform for harris_d533101_v2 (f) clustering for harris_d533101_v2.

Fig. 2 Spike waveform and clustering figure

vo
lt

ag
e(

m
V

)

fe
at

ur
e

2

1534-4320 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

Citation information: DOI 10.1109/TNSRE.2018.2848463
IEEE Transactions on Neural Systems and Rehabilitation Engineering

 1521

C_Difficult2_noise01 in Fig.3, sparse coding and compressive
sensing’s SD is similar to CBP, and higher than k-means and
SPC. For the three groups of synthetic data, we also give the
number of overlapped spikes and the ratio of misses to the
overlapping (RMO) spikes in Table 5. From the table,
Compressive Sensing’s average RMO is the slightly lower than
CBP and Sparse coding’s average RMO is slightly higher than
CBP, but both of them are much lower than k-means and SPC.

Next, we analyze the impact of several key parameters on
the performance of sparse coding and compressive sensing. Fig.
4 shows results for the impact of I on sparse coding and
compressive sensing, respectively. From C_Easy1_noise015 in
sparse coding, we can see that the errors of spikes decrease with
the value of I until I=25. When I  25, the errors are almost
unchanged, always 17. From C_Easy1_noise015 in
compressive sensing, the errors are the least when I=1 and
increase with the value of I until I=13. Then, the errors are
almost unchanged. The results show that, the performance of
compressive sensing cannot be enhanced even if I increasing,
but the performance of sparse coding can be enhanced. For the
data C_Difficult1_noise02 and C_Difficult2_noise01, the value
of I has similar impact on sparse coding and compressive
sensing.

Fig. 5 shows the impact of jr and js on the performance of
sparse coding and compressive sensing, respectively. From

C_Easy1_noise015 in sparse coding, the errors decrease from
181 to 17, with the value of jr and js from about 50 to 42.
Then, the errors will increase with jr and js from about 42 to
18. From C_Easy1_noise015 in compressive sensing, the errors
decrease from 47 to 23, with the value of jr and js from about
50 to 40. Then, the errors will increase rapidly when jr and js
are below about 40. In addition, we can also see that the misses
and false positives cannot arrive at the least value
simultaneously whatever jr and js are. Thus, the choice for
the value of jr and js may be only a compromise between the
two performances. For the data C_Difficult1_noise02 and
C_Difficult2_noise01, the values of jr and js have similar
impact on the performance of sparse coding and compressive
sensing.

B. Electrode recording data in rat hippocampus

In this sub-section, a group of real data are used to verify the
introduced algorithms and the traditional algorithms. The data
denoted by harris_d533101 are from CA1 region in
anesthetized rat hippocampus [5]. The data recorded by
electrodes are from the intracellular and extracellular,
respectively. The intracellular is used as ground truth and the
extracellular is used for test. Most parameters for
harris_d533101 are the same as in Table 4 except some ones
listed in Table 6.

 Fig. 2 (c) shows the waveform of three neuron spikes in this
data. It is seen from the figure that the peaks and shapes of the
three spikes are also different. Fig. 2 (d) is a two-dimensional
clustering figure for the data. From the figure, there are also
three clusters and the points for overlapped spikes are far away
from all centers of the clusters.

Table 5 gives the results for sorting harris_d533101. There
are some parameters not listed in Tables, which is specified as
follows. A maximum left shift and right shift in sparse coding

TABLE 6
SOME PARAMETER FOR DATA HARRIS_D533101

Parameter Value

Number of channels
Whiten
Length of signal segment
k-means

No. of principal components
CBP

Thresholds for three neurons

4
Whitened in time and space.
M=41

74

0.8194, 0.4806 and 0

TABLE 5
RESULTS OF SORTING SPIKE IN FIVE GROUPS OF DATA BY FIVE METHODS

Experimental data
SC CS k-means CBP SPC Number of

Spikes
Misses FP Misses FP Misses FP Misses FP Misses FP

C_Easy1_noise015 7\0.94 10 13\1.7 10 244\32.8 2 13\1.7 4 246\33.0 4 3477//744/21.4

harris_d533101 2 27 3 27 29 23 2 24 30 33 621

harris_d533101_v2 48 53 48 54 83 48 121 26 90 62 777

C_Difficult1_noise02 158\20.5 64 54/7 52 229\29.9 21 144\18.8 107 231\30.1 9 3414//767/22.5

C_Difficult2_noise01 12\1.6 22 7\0.93 5 204\27.1 21 7\0.93 3 206\27.3 18 3462//754/21.8

Average 45 35 25 30 158 23 57 33 161 25 2350

Note: SC, CS and FP are denoted by sparse coding, compressive sensing and false positives, respectively. The notaitons of \n, /n and //n is expressed as the
ratio of misses to the overlapping spikes, the ratio of overlapping spikes to total spikes and the number of overlapping spikes, respectively.

Fig. 3 SD (%) for three groups of similar-waveform data, harris_
d533101_v2, C_Difficult1_noise02 and C_Difficult2_noise01

C
_D

if
fi

cu
lt

1_
no

is
e0

2
C

_D
if

fi
cu

lt
2_

no
is

e0
1

ha
rr

is
_d

53
31

01
_v

2

1534-4320 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

Citation information: DOI 10.1109/TNSRE.2018.2848463
IEEE Transactions on Neural Systems and Rehabilitation Engineering

 1522

are jr =20, js =19, j=1, 2, 3 and I=27. The parameters jr
and js in compressive sensing are consistent with sparse
coding, but I=25. For this multi-channel data, we use the SPC
public software to handle single channel data. Then, we choose
the best performance of a channel from multiple channels in
harris_d533101 as final experimental results. We can see from
this group of data that, the misses by SPC is the highest,
arriving at 30 and those by k-means are also higher, arriving at
29. On the contrary, misses by compressive sensing is only 3,
and both of sparse coding and CBP are 2. The reason for higher
misses by k-means and SPC is still that they are cluster-based
methods. In addition, sparse coding and compressive sensing

have the same number of false positives, 27 slightly higher
than 24 of CBP.

Next, we analyze several parameters having the impact on
the performance in this group of data. Fig. 4 shows the impact
of I on the performance of sparse coding and compressive
sensing, respectively. We can see from harris_d533101 in
sparse coding that when I =27, the number of errors is the least,
only 29. When I>27, the errors tend to be stable. From
compressive sensing, the number of errors is the least when I
=25, only 30. Then, the errors also tend to be stable. The results
for this group of real data show that, the errors can be reduced
through increasing I reasonably. However, an excessive large I
could not always make the errors decrease.

Fig. 5 gives the impact of jr and js on sparse coding and
compressive sensing, respectively. From harris_d533101 in
sparse coding, the errors decrease from about 900 to 29 of a
minimum, with jr and js from 50 to about 21. Then, the
errors will be almost unchanged even if jr and js decrease.
From harris_d533101 in the compressive sensing, the errors
decrease from about 700 to 30 of a minimum, with jr and js
from 50 to about 21. Then, the errors will be almost unchanged
even if jr and js decrease. Similar with the synthetic data
above, the results indicate that both of misses and false
positives cannot arrive at a minimum simultaneously.

C. Electrode recording data in locust

In this sub-section, another real data are used to verify the
introduced algorithms and the traditional algorithms in this
section. The data denoted by harris_d533101_v2 are from
locust in vivo [10] and also have the intracellular and the
extracellular data. Most parameters for harris_d533101 _v2
are consistent with of Table 4 and 6 except some ones listed in
Table 7.

Fig. 2 shows the waveforms of three neural spikes. From the
figure, we can see that the shapes of the second and the third
one are some similar except their widths. Fig. 2(f) shows a
two-dimensional clustering figure for this data. There are also
three clusters and some points far away from all of the cluster
centers. From the figure, moreover, the cluster of the second

neuron is closer to that of the third one due to their similar
shapes[2, 16]. Hence, the points in the intersection of the two
clusters may be difficult to be sorted correctly.

Table 5 gives the results for sorting harris_d533101_v2.
Some parameters unlisted in tables are as follows. The values of

jr , js and I in sparse coding are set to jr =19, js =18, j=1, 2,
3, and I =35, respectively. The parameters jr , js in
compressive sensing are the same as sparse coding but I=33. It
is worth noting that the errors are significantly increased due to
the similar waveforms. For SPC, we still chose a channel data
performing the best. The misses by SPC are the highest, arrive
at 90. And, the misses by CBP are 121, even higher than 83 of

TABLE 7
SOME PARAMETERS FOR DATA HARRIS_D533101_V2

Parameter Value

k-means
Number of principal components

CBP
Thresholds for three neurons

77

0.8194, 0.7516 and 0

(a) SC for data C_Easy1_noise015 (b) SC for data harris_d533101

(c) SC for data harris_d533101_v2 (d) SC for data C_Difficult1_noise02

(e)SC for data C_Difficult2_noise01 (f) CS for data C_Easy1_ noise015

(g) CS for data harris_d533101 (h) CS for data harris_d533101_v2

(i) CS for data C_Difficult1_noise02 (j) CS for data C_Difficult2_noise01

Fig. 4. Impact of I on the performance of sparse coding and compressive
sensing.

n
u
m

b
e
rs

10 20 30

I

0

2

4

6

8

10

12 misses
false positives

1534-4320 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

Citation information: DOI 10.1109/TNSRE.2018.2848463
IEEE Transactions on Neural Systems and Rehabilitation Engineering

 1523

k-means. On the contrary, misses by sparse coding and
compressive sensing are the least, both 48. The reason why
CBP performs worse is the similar waveforms of the two
neuron spikes. On the other hand, the false positives by sparse
coding or compressed sensing are some higher than the other
three methods, but the sum of misses and positives are lower.
Thus, from the three groups of similar-waveform data,
harris_d533101_v2 C_Difficult1_noise02 and C_Difficult2_
noise01, the results of Table 5 and Fig. 3 show that two groups
of data display higher classification performance of our
algorithm and the other group display the same performance.

Next, we give the impact of several parameters on the
performance. Fig. 4 shows the change of I on performance of
sparse coding and compressive sensing, respectively. From
harris_d533101_v2 in sparse coding, the number of errors, 101
is the least when I=35. From harris_d533101_v2 in
compressive sensing, likewise, the number of errors, 102 is the
least when I =33. For both of the two algorithms, it is seen that
the errors tend to be stable even I increase from 27 to 37. The
results show that an excessive large I could not always make the
errors decrease. This is also consistent with the harris_d533101
data.

Fig. 5 shows the impact of jr and js on the performance of
sparse coding and compressive sensing, respectively. From
harris_d533101_v2 in sparse coding, the errors decrease from
about 1200 to about 100 of a minimum, with jr and js from
about 50 to about 20. From harris_d533101_v2 in compressive
sensing, the errors decrease from about 800 to about 100 of a
minimum, with jr and js from about 50 to about 20. Similar
with the previous two data, both of misses and false positives
cannot arrive at a minimum simultaneously.

D. Analysis for some parameters

From the results above, the value of I has an impact on the
performance of sparse coding and compressive sensing, and an
excessive large or an excessive small I cannot produce an
optimal sorting performance. The former will increase the
computational complexity and could not always have better
spike identification. On the other hand, the latter will result in
more sorting errors.

In addition, the establishment of a dictionary i.e. a
measurement Toeplitz matrix also has an impact on the results.
Likewise, excessive large or small shifts, jr and js are not
good candidates for sorting spikes. All of the groups of data

a

(a) Data C_Easy1_noise015

b

(b) Data harris_d533101

c

(c) Data harris_d533101_v2

d

(d) Data C_Difficult1_noise02

e

(e) Data C_Difficult2_noise01

Fig. 5 Impact of maximum right shift and left shift on the performance of sparse coding and compressive sensing.

1534-4320 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

Citation information: DOI 10.1109/TNSRE.2018.2848463
IEEE Transactions on Neural Systems and Rehabilitation Engineering

 1524

could indicate this point.

VI. CONCLUSION

This paper intorduces a sparse coding and a compressive
sensing method to solve a problem for overlapped spike sorting.
The introduced methods start from a convolutional model,
where a Toeplitz matrix is established from several spike
templates time-shifted. The spike templates could be obtained
via the centroids of clusters in traditional k-means algorithm.
Through a dictionary i.e. the Toeplitz matrix, sparse coding or
compressive sensing yields a sparse vector. Further, MAP will
optimize the sparse vector, through which an overlapped spike
sorting is completed.

In the experiments above, three groups of synthetic and two
groups of real data are used to testify the introduced and
traditional methods. From the experimental results, the
introduced method’s average sorting detection is nearly 4%
higher than traditional methods for the three groups of data with
similar spike waveforms. On the other hand, the introduced and
traditional methods have similar sorting performance for the
other two groups of data with different waveforms. This
indicates that our algorithm has some advantages in
classification when the waveforms of neuron spikes are similar.

Although our methods have better sorting performance for
the overlapped spikes with similar waveforms, some
improvement needs to be done. For example, when a Toeplitz
matrix is established, we need to choose a maximum right shift
and left shift which have an important impact on the
performance of sorting spike. How to choose reasonable values
will be a key technique. One of feasible solutions is that, we
first choose a group of training data and then try several values
of the maximum shift in the training data. Thus, each shift value
will have a classification result, and the value of shift
corresponding to the best classification result would be an
optimal value.

ACKNOWLEDGMENTS

This work was supported by the National Natural Science
Foundation of China under Grant No. 61762093, The17th
batches of Young and Middle-aged Leaders in Academic and
Technical Reserved Talents Project of Yunnan Province under
Grant No. 2014HB019, The Program for Innovative Research
Team (in Science and Technology) in University of Yunnan
Province.

REFERENCES

[1] H. G. Rey, M. Ahmadi, and R. Q. Quiroga, “Single trial analysis of field
potentials in perception, learning and memory,” Current Opinion in
Neurobiology, vol. 31, pp. 148-155, April. 2015.

[2] R. Q. Quiroga, Z. Nadasdy, Y. B. Shaul, “Unsupervised spike detection
and sorting with wavelets and superparamagnetic clustering,” Neural
Computation, vol. 16, no. 8, pp. 1661 -1687, Aug. 2004.

[3] M. S. Lewicki, “A review of methods for spike sorting: the detection and
classification of neural action potentials,” Network Computation in
Neural Systems, vol. 9, no. 4, pp. 53–78, Jul. 1998.

[4] U. Rutishauser, E. M. Schuman, A. N. Mamelak, “Online detection and
sorting of extracellularly recorded action potentials in human medial
temporal lobe recordings, in vivo,” Journal of Neuroscience Methods,
vol. 154, no. 1-2, pp. 204–224, June. 2006.

[5] K. D. Harris, D. A. Henze, J. Csicsvari, H. Hirase, G. Buzsaki, “Accuracy
of tetrode spike separation as determined by simultaneous intracellular
and extracellular measurements,” Journal of Neurophysiology, vol. 84,
no. 1, pp. 401–414, July. 2000.

[6] S. Shoham, M. R. Fellows, R. A. Normann, “Robust, automatic spike
sorting using mixtures of multivariate t-distributions,” Journal of
Neuroscience Methods, vol. 127, no. 2, pp. 111–122, Aug. 2003.

[7] C. Pouzat, O. Mazor, G. Laurent, “Using noise signature to optimize
spike sorting and to assess neuronal classification quality,” Journal of
Neuroscience Methods, vol. 122, no. 1, pp. 43–57, Dec. 2002.

[8] J. W. Pillow, J. Shlens, E. J. Chichilsnisky, E. P. Simoncelli, “A
model-based spike sorting algorithm for removing correlation artifacts in
multi-neuron recordings,” PLoS ONE, vol. 8, no. 5, article e622123, May.
2013.

[9] B. Chen, D. E Carlson, L. Carin, “On the analysis of multi-channel neural
spike data,” Advances in Neural Information Processing Systems
24(NIPS 2011). Cambridge, MA, 2011, pp. 936-944.

[10] M. Wehr, J. S. Pezaris, M. Sahani, “Simultaneous paired intracellular and
tetrode recordings for evaluating the performance of spike sorting
algorithms,” Neurocomputing, vol. 26–27, pp. 1061–1068, June. 1999.

[11] D. Khodagholy, J. N. Gelinas, T. Thesen, et al., “NeuroGrid: recording
action potentials from the surface of the brain,” Nature Neuroscience, vol.
18, no. 2, pp. 310-315, Dec. 2014.

[12] H. G. Rey, C. Pedreira and R. Q. Quiroga, “Past, present and future of
spike sorting techniques,” Brain Research Bulletin,” vol. 119, no. Part B,
pp. 106-117, Oct. 2015.

[13] Tiganj Z, Mboup M. A non-parametric method for automatic neural spike
clustering based on the non-uniform distribution of the data [J]. Journal of
neural engineering, 2011, 8(6): 066014.

[14] Ghanbari Y, Spence L, Papamichalis P. A graph-Laplacian-based feature
extraction algorithm for neural spike sorting[C]//Engineering in Medicine
and Biology Society, 2009. EMBC 2009. Annual International
Conference of the IEEE. IEEE, 2009: 3142-3145.

[15] Chah E, Hok V, Della-Chiesa A, et al. Automated spike sorting algorithm
based on Laplacian eigenmaps and k-means clustering [J]. Journal of
neural engineering, 2011, 8(1): 016006.

[16] C. Ekanadham, D. Tranchina, E. P. Simoncelli, “A unified framework and
method for automatic neural spike identification,” Journal of
Neuroscience Methods, vol. 222, pp. 47-55, Jan. 2014.

[17] F. Franke, M. Natora, C. Boucsein, M. H. Munk, K. Obermayer, “An
online spike detection and spike classification algorithm capable of
instantaneous resolution of overlapping spikes,” Journal of
Computat-ional Neuroscience, vol. 29, no. 1-2, pp. 127–148, Aug. 2010.

[18] Li. Y, A. Ngom, “Sparse representation approaches for the classification
of high-dimensional biological data,” BMC Systems Biology, vol. 7, no. 4,
pp. S6, Oct. 2013.

[19] Yi S, Lai Z, He Z, et al. Joint sparse principal component analysis [J].
Pattern Recognition, 2017, 61: 524-536.

[20] Yang. J, Liao. X, Yuan. X, “Compressive Sensing by Learning a
Gaussian Mixture Model From Measurements,” IEEE Transactions on
Image Processing, vol. 24, no. 1, pp. 106-119, Oct. 2015.

[21] B. Adcock, A. C. Hansen, “Generalized Sampling and
Infinite-Dimensi-onal Compressed Sensing,” Foundations of
Computational Mathematics, vol. 16, no. 5, pp. 1263-1323, Oct. 2016.

[22] K. Arai, C. Belthangady, H. Zhang, et al., “Fourier magnetic imaging
with nanoscale resolution and compressed sensing speed-up using
electronic spins in diamond,” Nature Nanotechnology, vol. 10, no. 10, pp.
859-864, Aug. 2015.

[23] S. D. Babacan, R. Molina, A. K. Katsaggelos, “Bayesian Compressive
Sensing Using Laplace Priors,” IEEE Transactions on Image Processing,
vol. 19, no. 1, pp. 53-63, Jan. 2010.

[24] G. Turin, “An introduction to matched filters. Information Theory,” IRE
Transactions on Information Theory, vol. 6, no. 3, pp. 311–329, July.
1960.

[25] I. B. Gad, Y. Ritov, E. Vaadia, H. Bergman, “Failure in identification of
overlapping spikes from multiple neuron activity causes artificial
correlations,” Journal of neuroscience methods, vol. 107, no. 1-2, pp. 1–
13, May. 2001.

[26] I. Obeid, P. D. Wolf, “Evaluation of spike-detection algorithms for a
brain–machine interface application,” IEEE Transactions on Biomedical
Engineering, vol. 51, no. 6, pp. 905–911, July. 2004.

[27] J. H. Choi, H. K. Jung, T. Kim,“A new action potential detector using the
MTEO and its effects on spike sorting systems at low signal-to-noise
ratios,” IEEE Transactions on Biomedical Engineering, vol. 53, no. 4, pp.
738–46, Apr. 2006.

1534-4320 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

Citation information: DOI 10.1109/TNSRE.2018.2848463
IEEE Transactions on Neural Systems and Rehabilitation Engineering, VOL.26, NO.8, AUGUST 2018

 1525

[28] S. P. Rebrik, B. D. Wright, A. A. Emondi, K. D. Miller, “Cross-channel
correlations in tetrode recordings: implications for spike-sorting,”
Neurocomputing, vol. 26–27, pp. 1033–1038, June. 1999.

[29] R. Rosenbaum, M. A. smith, A. Kohn, et al., “The spatial structure of
correlated neuronal variability,” Nature Neuroscience, vol. 20, no. 1, Jan.
2017.

[30] G. Vinci, V. Ventura, M. A. Smith, et al., “Separating Spike Count
Correlation from Firing Rate Correlation,” Neural Computation, vol. 28,
no. 5, pp. 849-881, May. 2016.

[31] Tiganj Z, Mboup M. Neural spike sorting using iterative ICA and a
deflation-based approach [J]. Journal of neural engineering, 2012, 9(6):
066002.

[32] C. Ekanadham, D. Tranchina, E. P. Simoncelli,“Recovery of sparse
translation-invariant signals with continuous basis pursuit,” IEEE
Transactions on Signal Processing, vol. 59, no. 10, pp. 4735–4744, Oct.
2011.

[33] A. Bemporad, “A Quadratic Programming Algorithm Based on
Nonne-gative Least Squares With Applications to Embedded Model
Predictive Control,” IEEE Transactions on Automatic Control, vol. 61,
no. 4, pp. 1111 – 1116, July. 2015.

[34] He Z, Yi S, Cheung Y M, et al. Robust object tracking via key patch
sparse representation [J]. IEEE transactions on cybernetics, 2017, 47(2):
354-364.

[35] A. Calabrese, L. Paninski, “Kalman filter mixture model for spike sorting
of non-stationary data,” Journal of Neuroscience Methods, vol. 196, no. 1,
pp. 159–169, Mar. 2011.

Haifeng Wu received the M.S. degree in electrical
engineering from Yunnan University, Kunming,
China, in 2004, and the Ph.D. degree in electrical
engineering from Sun Yat-Sen University,
Guangzhou, China, in 2007. He is currently an
professor at the Department of Information
Engineering at the Yunnan Minzu University. Prior
to that, he was a postdoctoral scholar at the
Kunchuan Institute of Technology from 2007 to
2009. His research interests include machine
learning, neural signal processing and mobile
communications.

 Kai Yang is now pursuing the M.S. degree in
electrical engineering from Yunnan University,
Kunming, China. His interests include neural system
and machine learning.

Yu Zeng received the M.S. degree in electrical
engineering from Yunnan University, Kunming,
China, in 2006. She is currently an assistant
professor at the Department of Information
Engineering at the Yunnan Minzu University. Prior
to that, she was an electrical engineer in Kunming
Institute of Physics from 2006 to 2009. Her research
interests include wireless network and mobile
communications.

